
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Leveraging Traceability between Code and
Tasks for Code Reviews and Release

Management

Jan Finis

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Leveraging Traceability between Code and Tasks for
Code Reviews and Release Management

Einsatz von Nachvollziehbarkeit zwischen Quellcode
und Aufgaben für Code Reviews und

Freigabemanagement

Author: Jan Finis
Supervisor: Prof. Bernd Brügge, Ph.D.
Advisors: Maximilian Kögel, Nitesh Narayan
Submission Date: May 18, 2011

I assure the single-handed composition of this master’s thesis only supported by declared
resources.

Sydney, May 10th, 2011 Jan Finis

Acknowledgments

First, I would like to thank my adviser Maximilian Kögel for actively supporting me
with my thesis and being reachable for my frequent issues even at unusual times and even
after he left the chair. Furthermore, I would like to thank him for his patience, as the
surrounding conditions of my thesis, like me having an industrial internship and finishing
my thesis abroad, were sometimes quite impedimental.

Second, I want to thank my other adviser Nitesh Narayan for helping out after Max-
imilian has left the chair. Since he did not advise me from the start, he had more effort
working himself into my topic than any usual adviser being in charge of a thesis from the
beginning on.

Third, I want to thank the National ICT Australia for providing a workspace, Internet,
and library access for me while I was finishing my thesis in Sydney.

Finally, my thanks go to my supervisor Professor Bernd Brügge, Ph.D. for enabling me
to write my thesis at his chair and for providing his Software Engineering book which
helped me a lot during the writing of this thesis.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management vii

Abstract

The establishment of traceability links from source code to software engineering con-
cerns like features, requirements, and tasks (the so-called code-to-concern traceability) is a
challenging field of research. The approach of this thesis links tasks in the software de-
velopment project to their resulting changes in the source code. In contrast, most existing
approaches link other concerns, like requirements satisfied by the code, to the source code.
By linking code changes to tasks, a more finely grained traceability is established. Since
tasks can be linked to other concerns, this approach can also be used to establish traceabil-
ity to these concerns as well.

Another point which sets this work apart from previous ones is that the proposed links
are maintained manually. In contrast to this, most of the existing approaches use heuristic
methods to compute links. Due to their statistic nature, these approaches are rather unreli-
able. Numerous processes exist which cannot deal with this unreliability and thus cannot
be realized with heuristic approaches. Two of them are elaborated in this thesis.

One process benefiting from the proposed links is found in the field of release manage-
ment: By maintaining links between tasks and their resulting implementation, it is possible
to determine which tasks are implemented in a given source code. By linking a release to
a set of tasks which should be implemented for this release, the source code from which
a release is to be built can be checked against these tasks. Thereby, it can be ensured that
a release contains all features which are planned for it. In addition, a changelog can be
generated by assembling the description of all included tasks. Ultimately, if the source
code changes associated to a desired task are missing in the source code of a release, it is
possible to automatically merge them into it.

Another process benefiting from the proposed links is code review: When the results of a
task are to be reviewed, a link to these results can be used to quickly transfer the respective
changes to the reviewer’s machine.

Version control systems like Subversion or Git already store the change history of a soft-
ware development project. Thus, using them to establish the links is a promising approach.
In this work, two different approaches using version control systems for the establishment
of code-to-task links are proposed: One uses patches whereas the other one uses branches
in the repository to store the set of changes to be linked to a task.

The two approaches are applied to the two aforementioned processes in the fields of
release management and code reviews. A tool is designed which performs the mentioned
tasks. A prototype of this tool, which is integrated into the UNICASE CASE tool for Eclipse,
is developed. Finally, the two approaches are compared and the prototype is evaluated.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management ix

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 3
1.3. Related Work . 5

1.3.1. VCS Repository Mining . 6
1.3.2. Source Code Traceability . 6
1.3.3. Release Management . 8
1.3.4. Code Review . 8

1.4. Scope . 9
1.5. Outline . 9

2. Preliminaries 11
2.1. UNICASE . 11
2.2. Version Control Systems & Related Concepts 12

2.2.1. Version Control . 12
2.2.2. Version Control Systems . 15
2.2.3. Patches . 19
2.2.4. Merging . 20

2.3. Popular Version Control Systems . 23
2.3.1. Early VCSs . 24
2.3.2. Subversion . 25
2.3.3. Git . 26
2.3.4. Further Modern VCSs . 30

2.4. Change Package Representation . 30
2.4.1. Patches as Change Packages . 32
2.4.2. Lightweight Branches . 32

2.5. Data Dictionary . 34

3. Requirements Elicitation 37
3.1. Functional Requirements . 37

3.1.1. Data Model Related Requirements . 37
3.1.2. Change Package Related Requirements 38
3.1.3. Repository Related Requirements . 39
3.1.4. Further Requirements . 40

3.2. Non-Functional Requirements . 40
3.3. Scenarios . 41

3.3.1. Scenario “Project Setup” . 41
3.3.2. Scenario “Development Workflow” 42

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management xi

Contents

3.3.3. Scenario “Release Building” . 42
3.4. Use Cases . 43

3.4.1. Use Case Setup Stream . 44
3.4.2. Use Case Create Release . 45
3.4.3. Use Case Assign Work Items to Release 46
3.4.4. Use Case Check Release . 47
3.4.5. Use Case Build Release . 49
3.4.6. Use Case Resolve Conflict . 51
3.4.7. Use Case Collect Changes . 52
3.4.8. Use Case Assign to Work Item . 53
3.4.9. Use Case Review Change Package . 54
3.4.10. Use Case Commit Change Package . 55

4. Requirements Analysis 57
4.1. Entity Objects . 57

4.1.1. CASE Objects . 57
4.1.2. Revision Handling Classes . 59
4.1.3. Release Checking Classes . 60

4.2. Boundary & Control Objects . 60
4.2.1. Change Package Related Objects . 61
4.2.2. Release & Stream Setup Related Objects 62
4.2.3. Release Building Related Objects . 63

4.3. Dynamic Behaviour . 64
4.3.1. Release Checking . 64
4.3.2. Release Building . 66

5. System Design 69
5.1. Design Goals . 69

5.1.1. Robustness & Reliability . 69
5.1.2. Time & Manpower . 69
5.1.3. Adaptability . 70
5.1.4. Utility . 70
5.1.5. Integration with Existing Systems . 70

5.2. Subsystem Decomposition . 71
5.2.1. Architecture Overview . 71
5.2.2. Selection of Off-The-Shelf Components 71
5.2.3. Subsystems . 72
5.2.4. Components (Plug-Ins) . 74

5.3. Hardware/Software Mapping . 75
5.4. Further System Design Decisions . 76
5.5. Boundary Conditions . 77

6. Object Design 79
6.1. The Eclipse Modelling Framework . 79
6.2. Adaption of the Analysis Object Model . 80
6.3. Extension Points . 82

xii Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

Contents

6.4. Displaying Model Elements . 84
6.4.1. JFace Viewers . 85
6.4.2. EMF Label Providers . 88
6.4.3. Decorating Images and Text . 91

6.5. Command Execution . 93
6.6. Adaption to Different VCSs . 94

7. Conclusion 97
7.1. Evaluation . 97

7.1.1. User Acceptance . 97
7.1.2. Comparison of the Two Approaches 99

7.2. Summary . 100
7.3. Future Work . 100

Appendix 101

A. User Manual 103
A.1. Setting up a Stream . 103
A.2. Creating a Release . 106
A.3. Collecting Changes and Creating a Change Package 106
A.4. Applying a Change Package to the Local Workspace 108
A.5. Applying a Change Package to the Remote Repository 109
A.6. Assigning Work Items to a Release . 109
A.7. Checking a Release . 110
A.8. Building a Release . 112

Bibliography 115

List of Figures 123

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management xiii

Chapter 1.

Introduction

The introduction of this thesis starts with the motivation, followed by the objective de-
scribing what exactly is the goal of this thesis. Afterwards, related work is presented and
finally a structural overview of the remainder of this thesis is given.

1.1. Motivation

In Software Engineering, the Software configuration management (SCM) is the discipline
of managing the evolution of large and complex software systems [1]. According to the
IEEE standard [2, 3], SCM covers functionalities such as identification of product compo-
nents and their versions, audit and review (quality assurance functions), status accounting
(recording and reporting the status of components and change requests), and change con-
trol (by establishing procedures to be followed when performing a change). Practicing
configuration management in a software project has many benefits, including increased
development productivity, better control over the project, better identification and bug
fixes, and improved customer goodwill [4]. To handle the ever increasing project complex-
ity, the efficient handling of SCM requires tool support. There is good tool support for
many tasks of the SCM. Standard SCM tools include bug and issue trackers (e.g. Bugzilla
[5]), build tools (e.g. Make [6] or Apache Ant [7]), and version control systems (e.g. CVS
[8], SVN [9], Git [10]). Other SCM activities still lack tool support. Two of them, the code
review and the releases management, are in the focus of this thesis.

One task of the SCM is the software or code review1. Code review is a process or meeting
during which source code written by a developer is presented to a reviewer (often another
developer of the project) in order to check the source code for errors or other issues. In
general, reviews are believed to provide a cost-effective means for discovering defects in
any document produced during the software life cycle. They can provide a great increase
in both productivity, by reducing development time, and product quality, by removing
more defects than is possible without using reviews. However, reviews are, by their very
nature, a labour-intensive process [11]. Because of this, tools for supporting the review
process are very important. However, only few tools exist as of now. Obviously, the prob-
lem is not overwhelming tool complexity, as the tasks of such a tool are rather simple: It
has to enable the reviewer to quickly transfer the changes to be reviewed to his machine in
a form that allows running the code. The tool should also highlight where which changes

1Note that there will be no distinction in this thesis between code reviews, inspections, and walkthroughs.
This is because all of them need the features described and it is irrelevant for our purposes which type of
review is actually carried out.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 1

Chapter 1. Introduction

were performed. After the review, it should allow the reviewer to approve or decline the
changes and save this decision in the project management documents. Version control
systems (VCSs) are a common SCM tool which allows to retrieve a set of changes. Thus,
this part of the tool support for reviews already exists. However, the problem is the miss-
ing traceability between the project management documents, which contain the task to
be reviewed and the VCS containing the implementation of the task. A good tool aiming
at supporting the review process would enable the reviewer to simply state which task he
wants to review. The system should make all arrangements to present the changes without
accessing the VCS directly.

Another important sub-discipline of the SCM is release management. In the course of
project development, release management is responsible for deciding in which configura-
tion a product is released and which features it includes. Van der Hoek et al. [12] describe
release management as a “poorly understood and underdeveloped part of the software
process”. This is especially true for one task: Making sure that the source code from
which the release is built really includes all features the release should embody. How-
ever, most literature about release management does not even mention this task. Instead,
it is assumed that a configuration of source code already exists and certainly contains all
anticipated content. Not even a common term exists for this task, yet. In the remainder of
this thesis, it will be called release content control (RCC): RCC is the task of defining which
features are desired in a specific release, identifying which features are contained in the
source code configuration from which the release will be built, and checking if these two
sets of features match. The following important questions arise in conjunction with RCC:

1. Is the implementation of each desired feature of this release included in the source
code? Or is it still not finished, or is it finished but only on the local hard disk of the
developer who implemented it?

2. Are there any other changes in the source code, which are not included in the list
of features? Examples could be undocumented bug fixes or accidentally introduced
changes.

3. Was the implementation of every feature reviewed and tested thoroughly?

Although more and more effort is spent on the research on release management, only
minor interest is put into the research on the first two questions in particular. Once a tool
can decide which features are included in the source code of a release, one can demand
even more: The tool should be able to build a specific release by assembling the source
code of the release autonomously. By specifying the base version of source code and a
set of features to be included into the release, the system should be able to merge the
implementation of all features into the source code of the base version. Of course, features
which are already included in the base version are omitted in this step. Another feature,
which is easy to implement if RCC tool support is used, is the tracking of changes in
the release: The release management must keep track of which new features the user can
anticipate in this release and publish a list of these features. This is often accomplished
in the form of a changelog. The changelog contains the list of changes included in the
release and is usually shipped with the product and/or published online. By reading the
changelog, a user working with an older version can decide if it is worth updating to the

2 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

1.2. Objective

latest version. If RCC is used, the changelog can be assembled automatically by the system,
as the system is able to identify the set of features contained in the source code.

The implementation of a tool providing RCC support depends on the possibility to de-
termine whether a feature is contained in the source code. To achieve this, traceability
between the source code and the features is needed. Thus, tools for the review process sup-
port and the RCC support depend on the following challenge: The establishment of trace-
ability links between source code and concerns2 like features, tasks, or requirements (the
so-called code-to-concern traceability). The fact that tools providing RCC support are hardly
available may be founded in problem that traceability links which are reliable enough to
enable RCC are hard to establish.

Many approaches exist to establish code-to-concern traceability. Most use heuristics
like latent semantic indexing [14], vector space indexing, or probabilistic indexing [15].
The problem with all these techniques is that they cannot provide links which are reliable
enough for RCC: There is a certain, yet too big, likelihood for omitting links or yielding
wrong links. Thus, reliable code-to-concern traceability is a topic which still requires re-
search. As shown above, it has at least two important applications in the field of software
configuration management and may have many more.

1.2. Objective

In this thesis, we propose two techniques to establish code-to-concern traceability (i.e.
traceability between project management concerns like features, bug reports, requirements,
and tasks and the source code which implements them). In contrast to many previous
works about this topic, our approach links the exact changes which were made in the
source code related to a specific concern. This is achieved by using a version control sys-
tem which tracks the changes. We apply the techniques to two specific software config-
uration management applications: The support of the code review and the release man-
agement process. A tool which uses the techniques to aid these processes is designed and
a working prototype covering all important use cases is implemented. The tool is to be
integrated into UNICASE [16]. This is a computer aided software engineering (CASE) tool
which embodies a unified model, allowing to manage all aspects of software engineering
in one model and to maintain traceability links between model elements from different
sub-disciplines. By linking tasks with source code changes, the gap between management
artifacts and concrete implementation is narrowed.

To be precise, the traceability link to be established is between changes in the source
code and work items. A work item is the generalization of any task or set of tasks in the
course of a software development project. Thus, this work actually focuses on code-to-task
traceability. Changes in the source code are to be related to a work item by an is-the-result-of
relation. Work items can be linked to other artifacts like requirements or use cases to reach
full traceability between code and various software engineering concerns.

The tool allows to specify releases and their desired content. This is accomplished by
selecting which work items, or more precisely the resulting changes thereof, are to be
included in a selected release. By using the is-the-result-of relation and the assignment

2Robillard defines concern as “any consideration that can impact the implementation of a program”[13]. Al-
most any software engineering artifact has impact on the implementation, so this is a very general notion.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 3

Chapter 1. Introduction

of work items to a release, the link between the software development domain (source
code changes) and the software configuration management domain (releases) can be estab-
lished. The core idea to generate the links is letting the developer build the links himself,
using the version control system of the project: Whenever he finishes the implementation
of a work item, the developer does not directly commit the changes to the repository. In-
stead, he orders the system to collect the changes and associate them to the work item.
The system then collects the changes made in a so-called change package and attaches this
package to the chosen work item in the unified model.

To establish the traceability links, the system must provide the following three services
which operate on change packages: A change package must be creatable from the current
changes the developer has in his workspace, the changes in the package must be appli-
cable to a given set of source files, and it must be possible to determine if the changes in
a package are already applied to a given source code. Finding an appropriate represen-
tation of change packages which allows efficient implementations for these three services
operating on it is the core research part of this thesis.

Using the change packages and the three services, the proposed tool is able to verify,
which work items assigned to a release already have their changes contained in the source
code at hand. Thus, it can inform the release manager which change packages need to be
applied to the code before the release can be published. The tool goes one step further
by automating the process of assembling a release: The tool autonomously applies the
changes associated to work items, if these changes are not yet contained in the source
code. The ultimate goal is to assemble the source code for a release by just pressing a
“build”-button and letting the system perform all the work.

The second main purpose of the tool is to support the review process. For this purpose,
it is assumed that source code is reviewed and tested on the work item scale, i.e. the source
code changes belonging to one work item are to be reviewed an tested3 at the same time.
The tool supports retrieving the source code changes associated to a work item and apply-
ing these changes to the local workspace of the reviewer. With the applied changes, the
reviewer can instantly start reviewing and testing these changes.

As already mentioned, the tool represents change packages and implements the services
operating on them by using a version control system. Since these systems already offer
features like extracting and applying changes, maintaining a version history, and fetching
the source code in a specific configuration from the repository, they are predestined to be
used for tracking changes in the source code. In addition, version control systems are also
widely accepted and used in the vast majority of existing software development projects.

The core of the prototype is kept generic: The way the change packages are actually
represented and the services are implemented is factored out to adapter plug-ins. These
plug-ins connect the core plug-in with the version control system. Thus, the different
approaches to representing change packages using different version control systems can
be exchanged and adapted to the version control system used for a specific project.

The prototype is developed as part of the UNICASE project, which is developed and
maintained at the chair for applied software engineering at the TU München. The UNI-
CASE project is an open source CASE tool for the Eclipse [17] platform. It features a unified

3Of course, tests on a larger scale, like integration tests and system tests, are required as well. These, however,
are not in the scope of this tool.

4 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

1.3. Related Work

model to embody data from different fields of software engineering. The prototype plugs
into this model and enhances it by adding all the model elements necessary for release
management and review tasks. By using the Eclipse platform, the tool is seamlessly em-
bedded into the different integrated development environments (IDE) Eclipse offers. A
prominent example is the Java development tools (JDT) environment for Java. In addition,
the tool uses the team provider interface of Eclipse to identify and access the version con-
trol system used for a project and is thus able to decide which adapter plug-in to use for a
given project, based on which VCS is registered as team provider for this project.

After the prototype is developed, its functionality is to be evaluated. For this reason, a
small user study to test the acceptance of the prototype is to be conducted. Finally, the two
approaches will be evaluated and compared.

In the remainder of this thesis, the terms tool, system under development, and prototype all
refer to the release management and review automation tool developed within the scope
of this thesis.

1.3. Related Work

To cut things short: No previous work covers the full spectrum of this thesis. The reason
is that this thesis explores theoretical mechanisms of achieving code-to-task traceability
while also providing a concrete application for the traceability. Related work covering
these aspects is mainly split into two parts: The first part covers the fundamentals and
techniques for maintaining traceability links without elaborating very concrete applica-
tions. The second part researches the possibilities to aid or improve the review and re-
lease management process. These works, however, are often rather high level surveys not
proposing specific techniques but rather identifying main challenges in these fields. They
also propose possible solutions, but often only on a very coarse scale without elaborating
a detailed solution.

The following four fields in which research is done are related to the work of this the-
sis. While the first two cover fundamentals of maintaining traceability and using version
control systems, the second two focus on aiding the concrete applications.

VCS Repository Mining This field of research focuses on mining and utilizing data from
the repositories of version control systems.

Code Traceability Here, research is done on different ways of relating source code to
other development artifacts like requirements and use cases.

Release Management This field examines and tries to improve the release management
process.

Code Reviews This field deals with code reviews and their benefits to software engineer-
ing. It includes processes and tool support for aiding their efficient realization.

The reason why no work covers the full spectrum of the content of this thesis may also
lie in the fact that using a unified model with traceable links between different software
engineering and project management entities is rather uncommon. Because this work is

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 5

Chapter 1. Introduction

built on UNICASE, which embodies the philosophy of unifying the different models found
in software engineering, it is natural to it to combine the different fields.

The research in the field of code traceability is the most important one for our approach,
because maintaining links between source code changes and work items constitutes the
most complex problem. If these links can be realized efficiently, the rest of the approach
turns out to be just a well thought-out usage of them. Therefore, the most related work
mentioned here is from this area.

1.3.1. VCS Repository Mining

The mining of different data from the repositories of version control systems is a huge topic
in the field of data mining. Most work done in this field, however, focuses on retrieving sta-
tistical information. Although the retrieval of statistical information is natural to the data
mining community, it is not relevant for the approach of this thesis: Our approach uses
version control systems to establish more reliable traceability links. In contrast, statistical
data is not able to provide links which are reliable enough for the proposed appliances.
Since most of the work is only partly relevant, few sources are to be mentioned here. In-
stead, at this point reference is made to Kagdi et al. [18], who conducted a very detailed
survey providing an overview and identifying important papers in this field of research.

Zimmermann et al. [19] used version histories in CVS to establish links between differ-
ent changes in source code and built a recommender system for developers. Although
the results are promising, they are still only statistical and thus yield missing links and
false positives. Similar approaches, which also use version data to establish links between
source code entities, were made by Gall et al. [20, 21].

Fischer et al. [22] link version control systems with release data, but go the opposite
direction than our approach: They use the version history in the repository, in addition to
bug tracking data, to automatically build the release history of a project and allow viewing
and querying it to retrieve information about the evolution of the project.

1.3.2. Source Code Traceability

Maintaining links between source code and other artifacts is a challenging task and there-
fore a field of intense research. Most approaches relate structures in the source code like
classes, methods, modules, files, or lines of code to other artifacts like requirements or fea-
tures. This is in contrast to our approach, which tracks changes instead of structures in the
code.

A very simple, yet effective approach is presented by Storey et al. [23, 24, 25] embedding
the links directly into source code comments, which can be read by their proposed tool
TagSEA [26]. They use tags in comments to refer to other artifacts or points of interest.
They go further into the direction of this thesis by creating links between tasks and source
code locations [27]. This is accomplished by connecting their tool with MyLyn [28], which
can be used to express tasks. They connect source code to MyLyn tasks by using special
tags.

Markus et al. [14, 29] establish links between source code and the corresponding docu-
mentation. In contrast to the aforementioned approach, they do not rely on any kind of

6 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

1.3. Related Work

explicit link markers but try to recover the links automatically. This offers the great ad-
vantage that it is also applicable for legacy projects. They use the so-called latent semantic
indexing (LSI, a machine learning technique) to extract parts of the semantics of the source
code and the documentation. By using similarity measures operating on these semantics,
locations in the source code can be linked to locations in the documentation.

A lot of research in this field has been conducted by Antoniol et al. Their first approaches
links source code locations to object-oriented design artifacts [30, 31, 32] and track the links
over software releases [33]. In their following contributions, they also establish links be-
tween code and free text documents (like user documentation and requirement specifica-
tions) [15]. Finally, they also treat code-to-concern traceability [34, 35, 36]. Like Markus
et al., they establish all the links without additional information, by performing different
static and dynamic analyses. They use, amongst others, vector space indexing and proba-
bilistic indexing techniques (comparable to LSI). All these methods are based on the textual
similarity of artifact content and source code identifiers and comments. Antoniol et al. also
compare the performance of these methods in [15]. Additionally, they claim the poor per-
formance of latent semantic indexing techniques, as applied by [14, 29]. Approaches using
similar techniques are made by Zhao et al. [37, 38] and De Lucia et al. [39].

A very interesting approach is first made by Wilde et al. [40]. They use test cases and
code coverage tools to map source code locations to features: By associating a test case
to a feature, the lines executed by this test case can be associated to the feature. This
is called execution-trace analysis. Of course, a line executed by more than one test case
can belong to various features. Eisenberg et al. [41] use a similar approach and focus on
weighting the influence of code locations onto features appropriately, thus retrieving more
precise results. Markus et al. [42] combine their aforementioned approach using LSI with
the execution-trace analysis, thereby increasing accuracy in comparison to previous re-
sults.

Grechanik et al. [43] use program analysis, run-time monitoring, and machine learning
to establish traceability links between source code locations and use case diagrams. In their
approach, the developer explicitly defines a small set of starting links, with the system then
trying to infer further links. They implemented their technique as an Eclipse plug-in.

Use-case-to-code traceability is achieved by Omoronyia et al. [44]. In addition, they also
trace which developer links together which artifacts. Their approach is based on tracing
the operations carried out by a developer. Thus, their approach is also able to identify
which developer is involved in the realization of a specific use case. This approach is more
similar to ours than the aforementioned ones, because it tracks operations (i.e. changes),
similar to our approach. Their contribution shows that tracking changes displays some
advantages over the other approaches. For example, relating a developer to the source
code and use cases is almost impossible with the other approaches, but very easy if changes
are tracked.

Robillard et al. [45, 46, 13] contribute by suggesting a representation of source code lo-
cation information linked to a specific concern. While most other approaches link lines of
code, files, or changes to concerns, they introduce so-called concern graphs as a representa-
tion of source code locations linked to a concern. They concluded that their representation
is compact, simple, expressive and thus appropriate for describing a code location linked
to a concern.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 7

Chapter 1. Introduction

1.3.3. Release Management

Van der Hoek et al. [12] identify basic issues in release management and develop a tool
to aid the release management process. However, their approach does not include assem-
bling and building components to be released. It is merely a database to which releases,
components to be released, their dependencies among each other, and meta data can be
added. They also identify the challenges of release management for component-based
software[47].

Michlmayer et al. [48, 49] investigate the specific challenges posed by release manage-
ment in open-source projects. Erenkrantz [50] does similar research evaluating the chal-
lenges in popular open source projects like the Linux kernel and the Apache HTTP server.

Saliu and Ruhe et al. [51, 52, 53, 54] contribute research in the field of release planning,
especially for evolving systems which are built incrementally. This field is concerned with
the selection and assignment of features to a sequence of consecutive product releases in
order to meet the most important technical, resource, budget and risk constraints. They
propose a release planning framework and evaluate it against previous approaches to re-
lease planning.

1.3.4. Code Review

The review process was introduced as “software inspection” by Fagan [55] in 1976. A
good starting point for review technologies and their progression are the surveys by Lait-
enberger et al. [56, 57] and Aurum et al. [58].

The benefits and impacts of software reviews were examined by Laitenberger [59], Siy
& Porter et al. [60, 61, 62], Kemerer et al. [63], and Mäntylä et al. [64]. Siy & Porter focus on
the costs and benefits of reviews, on the parameters which may alter the performance of
reviews, and on identifying in which situations reviews may yield value. Laitenberger also
examines the cost-to-benefits consideration while comparing reviews to structural testing
techniques. Kemerer et al. assess the impact reviews have on software quality. Finally,
Mäntylä et al. examine which types of errors are commonly found by code reviews.

Review processes are examined and proposed by Dunsmore et al. [65, 66, 67], and Rigby
et al. [68]. While Dunsmore et al. propose processes especially for reviews of object-orien-
ted source code, Rigby et al. examine review processes in open-source projects.

Brothers et al. [69, 70, 71], Harjumaa et al. [72], and Belli et al. [73] contribute to tool
support for the review processes. Brothers et al. propose the ICICLE tool — a tool for
reviewing C code. ICICLE embodies different functionalities aiding code reviews. Ex-
amples are a human interface for preparing comments on the code under inspection and
hypertext-based browsers for referring to various kinds of knowledge associated with code
inspection, thus achieving a certain degree of traceability. Harjumaa et al. propose a web
based tool. It features the distribution of the document to be inspected, annotation of it,
searching of related documents, a checklist, and inspection statistics. Belli et al. describe
an approach for the automatic handling, checking, and updating of check lists used in
reviews.

Macdonald et al. make further contributions focusing on tool support: They start with
a survey about existing tools [11] and then describe a generic process notation which can
be used to model a review process and use this model as input for a review support tool

8 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

1.4. Scope

which then works with the defined process [74]. Next, they discuss the features which
could be provided by computer support for inspection and the gains that may be achieved
by using such support [75]. They finish their research with an updated survey, which in
detail compares the existing solutions for review management [76].

1.4. Scope

The aim of this thesis is to propose a tool to support the release management and review
process in the ways described in Section 1.2. Only the aspects of the processes which are
mentioned therein are to be supported by the tool. All other aspects of these processes are
out of the scope of this thesis.

For reviews, this means that this thesis will not cover planning of reviews, review pro-
cesses, evaluation of review benefits and impacts, and tool support which covers other
aspects than the one mentioned in the objective.

For release management, this means that this thesis will not cover build management4,
release planning, delivery and deployment of release content, advertising of releases, and
release techniques.

Concerning version control systems on which the approaches in this thesis are built,
only centralized topologies with one global repository are considered. Because distributed
version control systems allow this topology as well, this is not a restriction to the VCS used,
only to the VCS topology a project uses (cf. Section 2.2.2). Although the approach of this
thesis would probably also suit distributed topologies, this was not further investigated.

Due to the limited time scope of this thesis, the long term evaluation of the prototype in
real software projects cannot be part of it. However, this definitely is a source for future
work (cf. Section 7.3).

1.5. Outline

In this thesis, two approaches for establishing source-code-to-task traceability will be pre-
sented. A prototype applying these concepts to the release management and review pro-
cess will be designed and evaluated.

Chapter 2 starts with elaborating topics which are the basis for the prototype. First,
the UNICASE tool, on which the prototype will be built, is explained. Next, version control
concepts and important version control systems are presented. Finally, the two approaches
for establish code-to-task traceability links, which are the main theoretical contribution of
this thesis, are presented.

Afterwards, Chapter 3 features the requirements elicitation for the tool to be created.
Here, the functional and non-functional requirements are presented. In addition, three
comprehensive scenarios describing the requirements of the system are shown, followed
by the use cases which were extracted from them.

After the requirements elicitation, Chapter 4 analyzes the gathered requirements. A
static model containing the entity classes of the problem domain is deduced. Subsequently,

4Although the term “building a release” is also used in the remainder of this thesis, it does not refer to
build management, i.e. compiling and packaging sources. Instead, it refers to assembling the source code
configuration which will be the input for the build management.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 9

Chapter 1. Introduction

this model is enriched by adding boundary and control classes for the execution of the use
cases. Finally, the dynamic model of some use cases is depicted.

Chapter 5 covers the system design of the prototype. The chapter starts with the design
goals which will influence the following design. Afterwards, the general architecture of
the prototype is shown. Based on this architecture and the design goals, the prototype
is decomposed into subsystems which are then mapped to components. These software
components are in turn mapped to hardware. Finally, further system design topics like
the definition of the global control flow, exception handling, and boundary use cases are
described.

Next, Chapter 6 covers the object design of the prototype. The focus is laid on presenting
interesting parts of this design instead of covering it in whole. First, a short introduction
about using the Eclipse Modelling Framework (EMF) [77] is given. The final extension for
the unified model of UNICASE, as modelled with EMF, is shown. Afterwards, the concept
of Eclipse extension points is depicted. Finally, strategies for the handling of commands
working with the unified model, the appropriate displaying of model elements, and the
adaption to different version control systems are presented.

At the end of the thesis, Chapter 7 draws a conclusion of the work. Here, the two ap-
proaches are compared, followed by an evaluation of the prototype. Ultimately, the con-
tent is summarized retrospectively and topics for future work are presented.

10 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

Chapter 2.

Preliminaries

This chapter presents and further describes topics which are the basis for the approach of
this thesis. The chapter starts with a presentation of the CASE tool UNICASE into which the
prototype will be integrated. Next, an overview over version control including the main
concepts and a description of version control software is given. This presentation of the
theoretical fundamentals is followed by a survey of the most widely used version control
systems. Afterwards, the two approaches of this thesis are elaborated. Finally, a data
dictionary is presented, which defines the most important concepts used in the remaining
chapters.

2.1. UNICASE

As mentioned in the introduction, UNICASE is a CASE tool realized as a plug-in for the
Eclipse platform. Its aim is to integrate the products and documents of different develop-
ment activities into one unified model, thus allowing cross referencing between them. For
example, a use case can be linked to the functional requirements related to it.

UNICASE consists of a client which allows the graphical creation and editing of the uni-
fied model. It also provides different tools for viewing the model from different perspec-
tives, thus allowing different monitoring activities to be executed efficiently. The second
part of UNICASE is the server, which is called EMF store. The server allows to share UNI-
CASE projects. Once a project is shared, the server provides version control of the project
model, allowing to view the revisions of the model and also reverting changes done to it.
Thus, the EMF store can be treated as a version control system for EMF models.

Currently, the unified model of UNICASE embodies models for the following develop-
ment activities:

Requirements Modelling Functional and non-functional requirements can be specified
and use cases can be described accurately.

UML Modelling The plug-in supports UML diagrams like class or use case diagrams.

Bug and Feature Tracking UNICASE provides support for tracking bug reports, issues,
and feature request.

Integrated Project Management UNICASE allows the specification of a work breakdown
structure, iteration planning, project status visualization and limited review support:
Different types of tasks and groups of tasks can be specified and assigned to devel-
opers. Additionally, a reviewer can be assigned to a task. The status of the task can

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 11

Chapter 2. Preliminaries

be tracked and the priority and estimated effort can be set. Different views visualize
the progress of the tasks.

The prototype is developed as an extension for UNICASE, adding support for release
management and extending the support for the review process. The unified model is ex-
tended by adding the model element types for concepts relevant to release management
(like releases and change packages). The concept of work items already exists in the uni-
fied model. The work item concept is enhanced by adding the is-a-result-of association,
which links work items to change packages and allows the association of work items with
releases in which the products of these work items should be contained. The exact model
changes are shown in Section 6.2.

2.2. Version Control Systems & Related Concepts

The proposed approaches for representing changes are built upon version control systems.
To provide a basis for concepts used in these approaches, this section will explain basic
version control concepts. This includes an introduction of version control in general, ver-
sion control systems as an implementation of version control, the description of the patch
concept, and finally a more detailed insight into the process of merging in version control
systems.

2.2.1. Version Control

Version control, revision control, software versioning, or just versioning is a sub-discipline of
software configuration management. According to Leon [4], version control is the act of
tracking the changes of a particular file [or project] over time. Its task is to manage dif-
ferent versions of the source code of a project. A version of a project depicts a snapshot of
all source code files at a given time and configuration. Close to the term of a version is
the term revision: The oxford dictionary defines revision as “a revised edition or form of
something” [78]. In the field of version control the term revision refers to a version which
was created by altering another version. Here, the term revision is often used as a syn-
onym of the term version. Since every version is created by altering another version (with
the first version being created by altering a virtual, empty version), the use of the term
revision for any version is reasonable.
Keeping versions has the following advantages:

• The source code of published versions (releases) and other important versions is
archived so any release can be re-built if necessary.

• Destructive changes in the source code (like the accidental deletion of parts of a
file’s content) can be amended by recovering an older version, even if the destructive
changes are already stored in the repository.

• The changes implemented at a specific moment by a specific person can be repro-
duced. This requires very fine grained versioning.

12 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.2. Version Control Systems & Related Concepts

• The existence of more than one development branch can be managed. For example,
while a new major release is already under development, changes to the current
release (e.g. bug fixes) can still be introduced and published, which is quite common
for larger projects.

Development Histories & Revision Graphs

In the simplest case without multiple development branches, the developers work only
with the latest version. Thus, any newly created version is the successor of the latest ver-
sion at that point. In this case, a version has always only one direct successor, with the
exception of the latest version which has no successor yet. An expressive method for dis-
playing version histories graphically is a revision graph. The graph represents the version
history by treating versions as nodes and the “is-successor-of” relation as edges. The nodes
are usually ordered by creation time to keep the graph clearly laid out. In the easy case
of a linear development, where the latest revision is always created from one predecessor,
such a graph would be a linear series of nodes. The upper part of Figure 2.1 shows such a
revision graph.

1 2 4

3

5

6

7

8 10

9

11

12

14

15

16

13

18

17

fork merge

1 2 4 5 7 9 1410 11 12 13

19

t

t

Figure 2.1.: Revision graphs for linear development (top) and with branches (bottom).

Once multiple development branches are introduced, a version can have more than one
successor. This is the case if a new development branch is started from that version. A
branch starting at a specific version (which belongs to another branch) is also said to branch,
diverge or fork from the other branch at that version. The changes done to two develop-
ment branches can be recombined, which is usually called merging the two branches. The
term “merge” is used because merging is what has to be actually performed: Merging two
branches is achieved by calculating all changes on the two branches since the version at
which they forked. The changes of one branch are then combined (merged) with the ones
of the other branch to achieve the recombination of the branches. If branches are used, the
revision graph becomes a directed acyclic graph (DAG). This is shown at the lower part of

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 13

Chapter 2. Preliminaries

Figure 2.1: A version has an additional successor for each additional branch which forked
from it. A version originating from a merge of two or more branches has as many prede-
cessors as branches were merged. Because the “is-successor-of” relation is consistent with
the temporal order of versions, no circles can exist (thereby yielding a DAG).

An example for more than one development branch is UNICASE, which is developed
on an internal and an external branch. The latest changes are commonly added to the
internal branch. From this branch internal releases are built and tested internally (hence
the name “internal”). The external branch contains only features which have proven to
work flawlessly. From this branch external versions are released to the public.

Note that versioning does not necessarily mean that a version control system is used.
However, version control systems are indeed used in most modern projects. Some oper-
ations like merging two development branches are very complicated without a version
control system (since they require the calculation and merging of changes which appeared
since the divergence of the branches). For linear version hierarchies without branches, sim-
ply copying all artifacts of the project to a safe destination to create a version would be a
possibility to accomplish versioning without using any tool support, but it is cumbersome
and uses much disk space if many versions are maintained. Thus, versioning without tool
support is very uncommon, and even small private software development projects often
rely on version control systems.

Repositories

One of the most essential items for any software development project is a repository.
Although today the term is often used in the context of version control system, a repository
in general is just a place where the versions of source code of a project are stored. Even if no
version control system is used, a repository usually exists to allow collaboration between
developers. It can be a folder on an ftp server or even on the local machine of one of the
developers. The repository has the following functions:

• It is the safe spot for the versions. If the data on a local machine of a developer gets
lost, then he can re-fetch the source code from the repository. Thus, the repository
should be protected against hardware failure and other causes of data loss. This
can be achieved by mirroring the artifacts on different machines, creating regular
backups and using redundant hardware (e.g. RAID [79]).

• The repository is the main source for collaboration between developers as changes
to a file are shared with other developers by updating this file in the repository.

• New developers joining the project or established developers working at a new ma-
chine can obtain the latest versions of the source code from the repository.

• The code in the repository is used to build releases.

• Depending on the type of the repository, it can offer additional services like version-
ing. This is especially the case for repositories managed by version control systems.

Although it is assumed here that a project has only one repository, other forms of devel-
opment with more than one repository exist as well. While this case is quite unknown for
commercial products, it is used quite frequently for open source projects.

14 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.2. Version Control Systems & Related Concepts

2.2.2. Version Control Systems

A Version Control System (VCS) is a tool for software development which controls the
different versions of the source code. Of course, non-source code files can be versioned by
a VCS as well. However, since source code files are the most common files found in VCS
repositories, the remainder of this thesis will only use the terms source files, source code or
simply code. Whenever one of these terms is used, it actually refers to any possible file to
be versioned. The basic mechanism of each version control system is that it features one or
more repositories in which the revisions are stored. The copy of the source code the user
has on his local machine and to which he applies the changes is called the working copy.
The basic operations of a version control system consist mainly of transferring data from
the repository to the working copy or vice versa: The user can retrieve revisions from the
repository and upload the changes in his working copy to the repository, thus creating a
new revision.

There is a set of basic commands which is more or less supported by every version
control system: The creation of a new revision in the repository by uploading the changes
in the working copy is usually called commit or check-in. A developer commits his work
after he has implemented and tested a feature. In the distributed case, where the developer
has a private repository on his own disk, he can commit during the implementation of a
feature even if the code contains errors. Most version control systems allow to reproduce
every single revision which was committed to the repository. However, some systems
allow the pruning of older revisions which are no longer needed. The operation which
retrieves a certain revision from the repository and writes the data to the working copy is
usually called check-out or fetch. Most newer version control systems allow the divergence
to different branches and the merging of those, as described in section 2.2.1. Some of the
systems maintain a special main branch called trunk while others treat each branch equally.
For one branch, the latest version is usually called the head revision of this branch. Most
of the time, developers are only interested in checking out the head revision of a branch
to retrieve the latest changes. Doing so is called updating. Most version control systems
also provide utilities to compare to revisions, thus identifying the changes made. Another
feature provided by most version control systems are tags. A revision can be tagged with
a specific name to find it later on in the large number of revisions. Thus, tags are used to
mark special revisions, e.g. the ones from which releases were built.

Repository Data Representation

The naïve algorithm of creating a new revision in a repository would be to transmit all
files to the repository and save a complete copy of all files. This, however, is unacceptable,
because it would require a tremendous amount of disk space and the commit would take
a very long time if the bandwidth of the connection to the repository is limited. Therefore,
version control systems use mechanisms to reduce the amount of space and network traffic
required.

One possibility to reduce traffic and disk space usage is to store only the differences
between two revisions, which is done by the subversion VCS, for example. The differences
between two successive revisions are called delta in this context. There are two directions
for representing versions as deltas: In the case of forward deltas, the differences from the

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 15

Chapter 2. Preliminaries

predecessor to the successor are saved and the first version in the repository is saved as
plain text. A version can be constructed by starting at the first version and walking the
revision graph to the desired version. While walking, the forward deltas are applied one
by one. The other direction can be implemented using reverse deltas. In this case, the
most recent version of each branch is saved as plain text and reverse deltas depicting the
changes from successor to predecessor are used to retrieve older versions. The reverse
delta approach has the advantage that the latest version, which is needed most frequently,
can be reconstructed without applying any deltas. The drawback of this method is that
the latest version saved in plain text has to be updated with each commit. In contrast, the
forward approach always saves only the first version, which never changes, as plain text.

Another approach to reduce disk space is to store the files not by name but by content:
By creating a hash from each file and saving the file using the hash as file name, two files
containing exactly the same content will not be saved twice, even if they reside in differ-
ent revisions or directories, or have different names. Consequently, all files that have not
changed between two successive revisions do not have to be saved twice. This approach
is used by Git, for example.

To ensure data integrity, most version control systems provide guarantees known from
database management systems. For example, most version control systems guarantee
parts of the ACID (atomicity, consistency, isolation, durability) properties for any trans-
action (like commits): Either a commit is executed thoroughly and successfully, or the
commit is aborted and no change is made to the repository (atomicity). No two people
can commit concurrently, or if they can, the system guarantees sequentially consistent se-
mantics (isolation). Some version control systems also protect against other threats to data
integrity like malicious changing of data.

Centralized vs. Decentralized

Version control systems can be divided into two categories: If one central repository is
stored on a globally accessible server, the VCS is labeled client-server or centralized. The
abbreviation is CVCS (centralized version control system). If each developer usually has
a local repository on his machine, the VCS is called peer-to-peer, distributed, or decentral-
ized. The abbreviated term DVCS (distributed/decentralized version control system) is
also quite common. In the distributed case, data is exchanged by pulling or pushing data
from one repository to another one. Finally, there are also local version control systems
which do not support networking. However, systems of this type have become obsolete;
all recent version control systems support networking in some manner.

Figure 2.2 shows the conceptual differences between centralized and distributed ver-
sion control systems. In the centralized case on the left, there is one global repository for
a project. Developers retrieve the latest version by checking out or updating from this
repository. Once they are done with their changes, they commit back to the repository. In
the distributed case on the right, each developer maintains his own local repository. Data
is transferred between developers by either pulling data from another developer or pushing
data to another developer. The pull strategy is more common because it requires only read
permissions on the other developer’s repository while pushing would require write per-
missions. As shown in the figure, dedicated repositories can exist in the distributed case
as well, but there is no need to have one, or a project can have more than one.

16 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.2. Version Control Systems & Related Concepts

Alice

Bob

Carl

Central
Repository

Alice

Bob

Carl

Repository

Figure 2.2.: Centralized (left) vs. distributed (right) version control.

= push = pull

Figure 2.3.: Different topologies when using a DVCS.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 17

Chapter 2. Preliminaries

The distributed case allows arbitrary topologies for a project. Some of them are exem-
plified in Figure 2.3. Pull operations are shown as blue arrows and push operations as red
arrows.

In the upper left example, the centralized case was emulated with one central repository
to which every developer pushes and pulls. This shows that the centralized case may even
be regarded as a special case of the distributed one. But still, developers have their own
local repositories, which allows them to use version control even if they are offline.

Another topology, shown in the upper right corner of the figure, is the pure peer-to-peer
case where no central repository exists and a loose network of developers pulls from each
other, which is often used in smaller open source projects.

For larger projects, the topology shown at the lower left corner may be used: A hierarchy
of developers exists. Although only one hierarchy level is shown in the example, more may
exist. The developers higher in the hierarchy retrieve work from developers lower in the
hierarchy by pulling from them. They incorporate the changes into their local repository
from which the next hierarchy level pulls and so on. The developer(s) at the topmost level
have write access to a global repository and push their changes to the repository. From
this repository, developers update their working copies to the latest version.

In the final example, as shown in the lower right corner of the figure, each developer
has an own private local repository and a dedicated global repository. Other developers
have read permissions for the global repository. The developer does changes to his local
repository. Once he wants other developers to see his changes, he pushes them to his
global repository from which other developers can pull the changes.

The cases shown here are only examples; any imaginable project structure can be con-
structed with distributed version control systems.

While the centralized version control systems like CVS and Subversion were more pro-
minent in the 1990ies, most recent version control systems are distributed. According to
Alvis and Sillito [80], there is a trend of moving from centralized to distributed version
control systems, especially in open source software (OSS) development. By examining
different OSS project communities, they identified the following reasons for this trend:

First class benefits to all users Even developers who do not have commit access in an
OSS project can track their changes while CVCSs often caused non-committers to
open parallel central repositories to track their changes.

Simple automatic merging DVCSs usually have a better support for automatic merging
and thus allow the easy maintenance of many branches which can be merged back
easily into the trunk later on.

Improved support for experimental changes With the cheap local branches offered by
most DVCSs, experimental changes can easily be made by creating an experimental
branch. This is unimaginable with CVCSs like Subversion.

Support disconnected operation A big advantage a local repository offers is that most
operations can be performed locally. This increases responsiveness due to missing
network delay and allows to access the repository without an Internet connection
available.

18 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.2. Version Control Systems & Related Concepts

2.2.3. Patches

A very simple form for collaboration between developers are patches. A patch is a file
depicting the changes made to one or many source files. Because it is usually very small in
size, it can be sent by email and is thus very handy to quickly exchange modifications to the
source code. This form of collaboration is particularly often found in open source projects
where not every contributor has direct access to the central repository. Such projects usu-
ally have a publicly available mailing list to which patches can be sent. If, for example,
a contributor without commit access fixes a bug, he emails a patch containing the bug-
fix to a committer of that project or uploads it to the project’s bug tracking system. The
committer can then apply the patch onto his version of the source code, review it, maybe
make additional changes, and then commit the changes to the repository. It was also the
method of choice in the days before most version control systems were invented, since
patches can be created with basic terminal commands in Unix systems which exist since
the 1970ies. Although many version control systems exist today, the method is still widely
used in open source projects [81].

Patches are usually created by saving the so-called diff (short form of difference, the
name emerges from the correspondent Unix command) of two files, which is also called
diffing the two files. Usually the two files to be diffed are the unmodified base version of a
source file and the version containing the changes. There are many programs which can
create such a diff file and then apply the changes to another file. The most basic tools
for this task are the Unix commands diff to create and patch to apply the diff file. To
ease the collaboration of different programs, a standardized format, the so-called unified
diff format, is often used [81]. More sophisticated patch formats (like the unified diff for-
mat) save contextual information with the changes and are thus able to apply the patch
meaningfully to a file which differs from the base file from which the patch was created.
If the differences are to big, however, the patch application can yield undesired results or
fail completely.

Instead of exchanging patches, another approach would be to send the complete changed
files. However, using patches has numerous advantages:

• A patch can also be applied to files that are slightly different from the base file from
which the patch was created. This is the most important advantage, because the
developer reviewing a patch can apply it onto his version of the source code, even
if it differs from the ones of the patch-creator. This is often the case if the developer
himself also introduced changes to this file, or the patch-creator used an older version
of the file.

• The patch file directly shows which parts of the code were changed, so the reviewer
can concentrate on them. This is particularly useful when it comes to large files.

• Programs applying patches can also revert the application. Thus it is easier for the
developer reviewing the patch to apply it to his local copy of the code, test it, and
revert the application if the changes are flawed.

• The unified diff format also includes the file name of the file to be patched. This
allows to apply the patch more conveniently because it enables the applying program
to identify the file to patch automatically.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 19

Chapter 2. Preliminaries

• The file size of all changed files would be bigger than the corresponding patch (this
issue is rather insignificant considering the disk space and bandwidth of today’s
computers and networks).

Most version control systems contain the functionality to create patches depicting the
changes between a base version of a file in the repository and the current version of that
file in the working copy. Thus, patches can be used easily in addition to the usual version
control mechanisms.

2.2.4. Merging

When multiple versions of source code are to be combined, the contents of each file, or
rather the differences between the two files, have to be combined. This is called merging
the files. The most obvious situation in which source files have to be merged is when two
development branches are merged. However, even without having multiple branches,
merging must often be done by a version control system. When a user updates to the
latest revision of the branch he is currently working on merging may be necessary: If more
than one user is working concurrently in the branch, they can add changes to the same
files. Upon updating, the changes the other users have already committed are received and
have to be merged with the changes the local user has in his workspace. Thus, merging
is an important mechanism for every version control system which supports more than
one user (which every modern VCS does), even if the system does not support multiple
branches.

The merging of two versions of a file is the process of combining the differences in both
files to create a new version containing all aspects of both versions. Depending on the
amount and complexity of differences, and on the amount of additional information avail-
able (like the knowledge about a base version from which both versions emerged), the
merging can be done automatically by an algorithm or must be done partly by a human.
The latter is the case if the files are either so different that a merge algorithm cannot even
find a common pattern, which happens very rarely, or if the algorithm is unable to com-
bine the differences in the files because it cannot decide how to combine them. An example
for the second case, which happens quite frequently, would be itwo text files containing
totally different content in one line. An algorithm cannot determine which of the versions
is the correct one or if both versions have to be combined somehow, so it surrenders and
cedes the choice to the user. This case is called a merge conflict or simply conflict. The files
and the differences in them are then said to be conflicting or in conflict. The system per-
forming a merge usually tries to resolve each difference between both files automatically.
So, even if some differences in the file are in conflict, others can be merged by the system.

There are two conflicting goals for a merge algorithm: It should be able to resolve most
differences automatically without escalating a conflict, but it should never resolve any dif-
ferences producing unintended, wrong results. The second goal is very important, because
developers performing a merge tend to think that everything went right if no conflict oc-
curred. If an erroneous merge was done, this could introduce bugs in the code which are
hard find, as they were not introduced by a programmer but by the system while perform-
ing the merge. So, the key feature of a good merge algorithm is to resolve many differences
automatically while ensuring that almost no wrong results are produced.

20 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.2. Version Control Systems & Related Concepts

Two-Way Merge

The naïve merge approach compares two versions and tries to combine all differences.
Because only two versions are involved, this type of merge is called two-way merge. It
is used by older version control systems. It performs comparably bad because it either
generates a large amount of unintended results or produces many conflicts. The reason
for this is that it is not clear which version has to be used in the case of differences. The
following example shows in which simple situations a two-way merge fails:

Version 1

c l a s s C{
}

Version 2

c l a s s C{
/ / L ine added

}

Figure 2.4.: Two versions of a source file

Consider the two versions of a Java source file shown in Figure 2.4. The only change is
that a line with a comment was added in the second file. A naïve two-way merge without
a preference for any file must guess if it is correct to leave out the line or add it. Guessing
wrong will lead to an unintended result, so it is better to propagate the decision to the user,
i.e. creating a conflict. This conflict can be resolved automatically by stating which version
“wins” in such situation. Such a decision, however, will not lead to correct results in most
cases, because both files may contain changes which should be used. Another approach
would be to always prefer adding a line over removing it. But, this will introduce wrong
results in cases where a line should be deleted. Thus, there is no general strategy which can
accurately merge two files without either much help from the user, which is undesirable,
or additional information. The following strategy relies on such information.

Three-Way Merge

A more sophisticated algorithm for performing merges is the three-way merge. As the
name suggests, three versions of a file are used to perform the merge: The two versions
two be merged and the base version from which both versions originated. In the case
of a branch merge in a version control system, the base version can always be obtained
by following the branches backwards until the revision where they diverged is reached.
The file in this revision is used as the base version. This approach produces less conflicts
because it can often make a decision based on the content of the base version.

Version 1

c l a s s C{
}

Version 2

c l a s s C{
/ / L ine added

}

Base Version

c l a s s C{
}

Figure 2.5.: Two versions of a source file emerging from a common base version

Again, consider the example source files from Figure 2.4 with an added common base

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 21

Chapter 2. Preliminaries

version, as shown in Figure 2.5. In this case, the three-way merge can safely decide that
it is correct to add the line with the comment. Since the base version did not contain the
line, the line must have been added in version 2 while version 1 has not been altered.
So, the simple addition, change, or removal of one or more lines can often be resolved
automatically by a three-way merge. However, if both versions contain changes in the
same places, a three-way merge must fail as well and produce a conflict.

Version 1

c l a s s C{
/ / Foo

}

Version 2

c l a s s C{
/ / Bar

}

Base Version

c l a s s C{
}

Figure 2.6.: Conflicting versions

Consider the versions in Figure 2.6. In this case, both versions added a line with different
content to the base version. The algorithm cannot decide if it is correct to use either of the
versions or add both lines. Thus, the system will report a conflict and the user has to
decide.

Although two general strategies for merging — the two-way and three-way merge —
were discussed, no concrete algorithms were presented, as this would go beyond the scope
of this introduction. However, a large number of algorithms exist. Whether a version con-
trol system supports easy branching depends much on the quality of its merge algorithm.
Without a good merge algorithm, each branch merge may raise many conflicts which have
to be resolved by the user performing the merge. Resolving conflicts is no easy task be-
cause it requires knowledge about the contents of both versions of the file to decide how
the conflicting changes have to be combined.

Conflicts

Whenever the differences in two or more versions of a file have to be merged, a conflict
can occur. A conflict depicts the situation in which the system is not able to decide how to
merge a specific difference. In this case, the system stops the merge process and asks the
user to merge the differences manually.

As shown above, less sophisticated merge strategies like the two-way merge often pro-
duce conflicts. More sophisticated strategies like the three-way merge are able to resolve
more potential conflicts automatically by examining additional information like a common
base version. A common situation where a conflict occurs and cannot be resolved automat-
ically by a merge algorithm is that two users edited the same parts of a file concurrently.
Another case where the merge system is not able to perform the merge is if two files differ
from each other so much that no common structure can be found. But this occurs only
very rarely because files to be merged usually emerge from the same base file. Therefore,
they usually do not contain totally different content.

In case of an unresolvable conflict, the responsibility of a good merge system is to pro-
vide the user with the exact location of the conflict and the content of both versions at
that location. It is then the user’s tasks to combine the content of both versions manually.
The most common way for showing a conflict to the user is by inserting so-called conflict

22 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.3. Popular Version Control Systems

markers into the file. These are textual insertions depicting details about the position of
the conflict and the conflicting differences. Consider the source code versions which were
shown in Figure 2.6. Here, the action causing a conflict is the insertion of the comments
//Foo and //Bar into the same line. Assume the two versions are managed using Git
and stored on the branches Version1 and Version2. If the user orders to merge these
branches, Git will detect the conflict and insert conflict markers yielding the content shown
in Figure 2.7.

public c l a s s C {
<<<<<<< r e f s /heads/Version1

/ / Bar
=======

/ / Foo
>>>>>>> r e f s /heads/Version2
}

Figure 2.7.: Result of merging version 1 and version 2 of Figure 2.6

The conflicting line was replaced by conflict markers wrapping the two conflicting ver-
sions of that line. Git surrounds a conflict by multiple < and > signs followed by the
names of the merged branches (which are implicitly prefixed with refs/heads/ in Git).
The contents of the two branches are separated by = signs.

So the user has the conflicting lines replaced by the conflict markers comprising the
conflicting contents. He can now combine these contents and remove the conflict markers
to resolve the conflict. Afterwards, he must explicitly inform the version control system
that the conflict was resolved. Because conflict markers are plain text (and thus could be
added to a file manually), the system cannot rely on just checking the absence of conflict
markers. In Git, the developer uses the add command to mark the conflict in a file as
resolved. Other version control systems use similar mechanisms.

Although the manual resolution of a conflict seems quite simple on first sight, it is in-
deed a very tricky operation. To combine the differences meaningfully, the developer must
know the purpose of the lines which conflict and must know how the two versions alter
this purpose. For large projects, this can be quite a problem because not many persons
know the whole source code of the project. Consequently, a merge should always be exe-
cuted by the persons who worked on the branches to be merged. Merging branches leads
to incorporating changes to the source code. Thus, even if both branches are tested thor-
oughly, their merge can introduce new bugs and has to be tested again. Due to all these
reasons, resolving conflicts is a very dangerous operation and should be averted when-
ever possible. It is very important to use a good merging algorithm that brings up as few
conflicts as possible, while not producing erroneous results.

2.3. Popular Version Control Systems

In this section, the most popular and historically important version control systems are
described in more detail. Especially, Git and Subversion, which were examined in the
scope of this thesis and on which the prototype is based, are described in more detail.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 23

Chapter 2. Preliminaries

2.3.1. Early VCSs

Version control systems have been existing since the 1970s. However, the first systems did
not contain any form of networking and offered version control locally on one machine.
This limited the collaboration support of this tools significantly. Hence, version control
systems were not as popular as today. This changed with the release of the first version
control system with network support: CVS.

Source Code Control System

One of the first systems to be considered a version control system is the Source Code
Control System (SCCS) [82] written 1972 by Mark J. Rochkind at the Bell Labs. Although
it was developed long ago, it contains many features of modern version control systems.
For example, it already contains limited access control, is able to reconstruct any recorded
revision, logs the date and user who made a specific change, and allows to state a reason
for a change (comparable to the so-called commit message in recent version control systems)
[83]. SCCS stores revisions using forward deltas (cf. Section 2.2.2). It is a local VCS and
does not support collaboration between different machines. Therefore, it has become ob-
solete and is not used widely anymore. Its file format is still being used by some modern
version control systems like the proprietary products TeamWare [84] and BitKeeper [85].

Revision Control System

The Revision Control System (RCS) [86] is a version control system written by Walter F.
Tichy in the early 1980s [87]. It is realized as a set of Unix commands. RCSs tracks sin-
gle files, which makes the tracking of whole projects cumbersome. RCS stores revisions
as reverse deltas in order to improve performance, because it is assumed that newer ver-
sions (especially the latest version) are needed more often than older ones. RCS explicitly
supports branches. However, RCS stores branches as forward deltas to save disk space
(as each branch head would have to be saved as plain text in the reverse approach). This
decreases the performance for retrieving revisions on branches: Starting from the head
revision of the trunk, the reverse deltas must be applied back to the revision where the
branch forked from the trunk and then applying the forward deltas in the branch until
the desired revision is reached. This design decision was made because working with
branches was very uncommon at the time RCS was developed. The focus was laid on fast
retrieval of the trunk revisions. RCS introduces locking of important files, which prevents
other users from changing them while volatile changes are made. Like SCCS, RCS is a
local VCS and not widely used anymore. It was mainly superseded by CVS, which was
originally based on RCS, but added network support.

CVS

The Concurrent Versions (or Versioning) System (CVS) [8] started out as a set of UNIX
shell scripts written by Dick Grune in 1986 [88]. The scripts used the commands of RCS as
version control primitives and built a networking layer on top of them. It introduced the
concept of a central repository and a local copy on the developer’s machines. In contrast
to earlier VCSs, this imposed the need for operations to merge code from the repository

24 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.3. Popular Version Control Systems

into the local version and vice versa. In 1989, Brian Berliner wrote a C version of CVS
which is still used today, calling it CVS II [89]. Although this version was not built on RCS
anymore, it still used the storage format of RCS.

CVS is able to version whole projects. This is accomplished by using the approach of
keeping a separate RCS history for each file while providing commands which operated
on many files simultaneously. The introduction of networking and the ability to easily
manage whole projects, paired with CVS being free software, quickly made it a de-facto
standard in open source software development [90]. Although CVS is used less often today
in favor of more recent version control systems, it is still used for many projects, especially
in the open source community [91]. CVS was particularly superseded by Subversion which
was created with the aim to become CVS’s successor.

2.3.2. Subversion

Subversion (SVN), now Apache Subversion [9], was initially created as open source project
at CollabNet in the year 2000. The explicit goal of SVN was to create a version control
system which operated much like CVS but fixed bugs, limitations, and design flaws of
CVS [90]. In November 2009, it became an incubation project of the Apache Software
Foundation and was accepted as Apache top level project on February 17, 2010.

An SVN repository consists of one directory tree starting at a specified root. Differ-
ent projects are usually stored in the same SVN repository by creating sub-folders in the
repository’s root folder. Instead of versioning single files, a revision in SVN may represent
a whole directory tree of files. SVN uses global revision numbers to identify revisions,
starting from zero and increasing the revision number by one for each successive commit.
Only files which are actually changed in a commit receive the new revision number of the
commit, others retain their old ones. The revision number of a directory is calculated as
the highest revision number of its contents. The reason why unchanged files retain their
old revision number after a commit is because a commit does not include an update in
SVN. Thus, these files could have been changed by other people in the meantime. If their
revision number was updated, their content should be updated as well to maintain con-
sistency. Since no update is performed during commit, they are not updated. Once an
update to the latest revision is done, all files’ revisions are update to the latest revision
number even if they have not changed. This is done to flag these files as up-to-date. Since
trees have a revision, too, it is very easy to describe a specific revision of the whole project
by stating the revision number of the root directory of the project. In CVS, in contrast, a
revision of a project can only be specified by stating a certain date and then searching the
revision for each file which was the latest at that date. The improved support for version-
ing of whole projects is one of SVNs key features over CVS.

SVN stores meta data for each folder in a hidden sub-folder called .svn. This folder also
contains the base version of each file as yielded by the last check-out or update operation.
While this increases disk usage, it allows the execution of some commands locally instead
of having to query the remote repository, which would introduce network delay. For ex-
ample, the changes in the working copy can be calculated locally, while CVS must ask the
repository to collect the changes. Also, local changes can be reverted without querying the
repository.

SVN is a client-server based version control system: The working copy is linked to ex-

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 25

Chapter 2. Preliminaries

actly one remote repository. The networking can be done via an own SVN protocol, HTTP,
or SSH+SVN to use secure shell encryption [92]. The repository uses either the Fast Secure
File System (FSFS) or a Berkeley Database (BDB) as back-end to store the content. Both
approaches use deltas to save disk space. The details are based on the used back-end [93]:
In case of FSFS, forward deltas are stored. This means, to retrieve a revision deltas must be
applied starting from revision 0 until the desired revision is reached. Because this would
cause time consumption linear to the number of revision, so-called skip deltas are used: In-
stead of saving the deltas to the direct predecessor revision, the deltas to an earlier version
are stored. Which earlier version is chosen is calculated from the revision number in a way
that ensures that at most a logarithmic amount of deltas has to be applied to reach an arbi-
trary revision. This approach is similar to the one of skip-lists. If BDB is used as back-end,
reverse deltas are stored. The skip delta approach is also used here to ensure logarithmic
time consumption.

SVN does not offer the concept of branches or tags directly. However, it is able to sup-
port them by using the copy command. This command makes a so-called cheap copy of
a file or directory in the repository. A cheap copy starts out as just a symbolic link to the
copied directory. Once changes are done to the copy, these changes are stored as deltas
only. Thus, although the cheap copy is shown as an own directory with all the contents of
the source directory in the repository, it does not take the space of a complete copy (at least
not in the repository, only in the working copy). A branch can be created by cheap-copying
the whole project folder to another location. Developers who want to work on the branch
check out the destination where the files were copied to and introduce their changes on
this destination. Since the resulting copy is not explicitly marked as branch, a default di-
rectory structure is recommended to identify branches and tags: The recommended project
structure in an SVN repository is to have a directory for each project in the root directory of
the repository. In this directory, the folders trunk, branches, and tags are created. The
trunk folder contains the main development branch of the project. A branch is created
by cheap-copying the content of the trunk folder into a new subfolder in the branches
directory, having the branch’s desired name. A tag is created the same way, but copied
into the tags folder. Thus, a tag in SVN is conceptually the same as a branch with the
exception that nobody should commit to this tag (which would make it a branch). Access
control mechanisms can be used to prevent users from committing to the tags directory. To
check out a tag or branch without having to check out the whole directory (which would
also take additional disk space), SVN provides the switch command to replace the work-
ing copy with the specified directory or revision. A shortfall of the branching mechanism
in SVN is that it does not track branch merges. Version 1.5 supports the tracking of merges
but allows it only for repositories which were already created with version 1.5 or higher
— legacy repositories cannot be upgraded to support merge tracking[94].

2.3.3. Git

The development of the Git [10] version control system was started by Linus Torvalds in
April 2005 after the proprietary version control system BitKeeper, which was used for the
Linux kernel at that time, was no longer usable free of charge for all developers due to a
license change. Torvalds said that he had designed Git using a "what would CVS never
ever do"-approach [95]. Thus, it can be anticipated that most concepts of Git are different

26 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.3. Popular Version Control Systems

from those of CVS and its successor Subversion. The most obvious difference is that Git
is a distributed version control system. There are no privileged server nodes. Instead,
each user has an own repository on his machine and can make this repository publicly
available so other users can pull content from it. Despite the decentralized model, many
open source software projects have an “official” repository from which releases are made
and which developers use for updating their working copies [94].

A Git repository is a hidden folder named .git. It is usually found in the topmost folder
of the working copy. Git identifies each data object (revision, tree, file) with a 40 byte SHA-
1 hash of its content. Git does not store files by their names or paths but by their content:
Two files with the same content have the same hash and are therefore stored as one blob
(binary large object, Git’s representation for file content). The advantage is that renaming
or even moving a file to another folder still tracks this file as the same file, while other
version control systems enforce the usage of special commands to keep track of renaming
or moving [96]. Git supports compression to reduce the repository size. Garbage data
piles up in a Git repository until it is explicitly collected. Such garbage can arise from
deleted branches, for example. While it is unimaginable in a CVCS like SVN that data is
irrevocably deleted from the repository, this is quite common in the distributed case.

Instead of having steadily increasing revision numbers like in SVN, a revision (or commit,
as a revision is often called in Git) explicitly saves its previous and successive versions.
Global revision numbers are generally not very suitable for distributed VCSs because it is
hard to keep them consistent for the different repositories exchanging commits with each
other.

Working
Copy

Staging
Area

Local
Repository

Remote
Repository

Networkadd

commit

push

pull

fetch

checkout

merge

clone

commit --all

Figure 2.8.: Data transferring Git commands

Git, and DVCSs in general, support commands for committing and retrieving data from
the local repository (similar to CVCSs) and for exchanging data with other repositories.
Git provides even more: It has a so-called staging area, which is a cache for file changes
before they are committed. Figure 2.8 shows the basic commands of Git transferring data
between different locations. The add command transfers changes in one or more files to

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 27

Chapter 2. Preliminaries

b

a

x

A

B

X

Figure 2.9.: Criss-cross merge

the staging area. The commit commands commits all changes in the staging area to the
local repository. By selectively adding files to the staging area, a so-called selective commit
can be done1. It is also possible to automatically add all changed files to the staging area
before committing (commit -all), so the usual workflow of other VCSs, which do not
have a staging area, can be emulated2. The checkout command can be used to retrieve
any commit, tag, or branch from the repository and place it in the working copy. The
merge command is used to merge two branches and transfer the result to the working
copy. The push command is used to push specific branches to another repository, given
that write permissions for the other repository are held. Three commands allow the re-
trieval of data from another repository to the local repository: clone, fetch and pull.
Clone is used to create a new local repository by copying (cloning) the content of a re-
mote repository. The fetch and pull commands allow to retrieve one or more branches
from another remote repository. While pull tries to merge the retrieved branch into the
currently active branch, fetch just retrieves and stores the branch without relating it to
the currently active branch. Thus, a pull is basically a fetch followed by a merge. The
pull command is usually used to update the current branch to the latest revision stored
in a remote repository. In this case, it is desired that the branch retrieved from the remote
repository is directly merged into the current working branch.

A feature Git shares with other distributed version control systems are so-called cheap
local branches. The term “cheap” expresses that such branches can be created and merged
quickly and easily and do not use much disk space. This allows using branches for many
applications, which would be impossible with a centralized version control system. For
example, a new branch can be used for a feature or bug fix that is being developed. Once
the work on this feature is done, the branch is merged back into the main development
branch. Another application is creating an experimental branch to have a sandbox for
testing different changes. Figure 2.10 shows a small part of the revision graph of the JGit
project which is self-managed with Git. As can be seen, numerous branches are created,
concurrently edited, and merged. No project managed with a VCS which supports only
non-local branches, like SVN, would look like this.

An additional property required to use branches conveniently is the existence of so-
phisticated merge algorithms which allow merging branches with a minimal number of
conflicts to resolve. Git provides different merge strategies. For example, the recursive
merge performs a three-way merge on two branch heads. While using a three-way merge

1This is also possible in other version control systems by explicitly specifying the list of files to include in the
commit.

2Note that newly created files are not added by commit -all, only changed files. For new files, add has to
be executed explicitly.

28 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.3. Popular Version Control Systems

Figure 2.10.: Part of the revision graph of the JGit project

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 29

Chapter 2. Preliminaries

is a common feature in modern version control systems, the interesting part is selecting
the common ancestor required for a 3-way merge. Figure 2.9 shows a situation, called
“criss-cross merge” where it is not clear which revision to select as common ancestor [97].
Revisions A and B are to be merged to revision X while a and b are possible choices for
a common ancestor3. However, using either of them could lead to a surprising result as
the content of the other one would not be taken into account. To resolve this, the recur-
sive strategy merges the candidate revisions a and b into a temporal revision and uses this
revision as a basis for the merge

Another merge strategy used by Git is the so-called octopus merge which is able to merge
more than two commits concurrently. Additional strategies like the ours strategy allow
to merge two branches by using only the content of one branch (“our” branch, i.e. the
currently active branch) and discarding the differences in the other. This can be used to
alter the revision graph without merging the actual contents. For example, such merge
can be used to display that a development branch containing a bug fix should no longer
be merged into other branches, as it was replaced by another fix for the same problem.
The different strategies applicable in Git make the lightweight branches more flexible and
allow to use them in more situations.

2.3.4. Further Modern VCSs

Besides Git, many other version control systems were released in the last decade. Most of
them are distributed systems. Some of the most important distributed open source VCSs
[98] are Gnu Arch [99] (2001), Darcs [100] (2002), SVK [101] (2003), Monotone [102] (2003),
Codeville [103] (2005), Mercurial [104] (2005), Bazaar [105] (2005), and Fossil [106] (2007).
However, SVN and Git dominate the field: Figure 2.11 shows the amount of packages for
the Debian Linux distribution using a specific version control system. Here, SVN and Git
are by far in a leading position, followed — with a huge gap — by Bazaar. All other VCSs
tend to zero, with the obsolete CVS still having the top position.

Although some proprietary solutions like Team Foundation Server [107] (centralized) by
Microsoft and BitKeeper [85] (distributed) by BitMover Inc. exist, open source solutions
have prevailed, because most of them are very mature projects supported by a large com-
munity and can thus equal or outperform the proprietary solutions. In addition, platforms
which allow free hosting of projects exist for most major open source version control sys-
tems. This boosts their popularity even more. Examples are GitHub [108] for Git, Launch-
pad [109] for Bazaar, Google Code [110] supporting SVN and Mercurial, and Assembla
[111] supporting SVN, Git, and Mercurial.

2.4. Change Package Representation

Before a prototype to aid the review and release management process can be designed,
theoretical approaches of how version control systems can be used to reach the desired
functionality have to be elaborated.

3Revision x is not a candidate because a and b are additional ancestors of A and B, respectively. Thus, x does
not contain all necessary base information. If the direct edges (a,A) and (b,B) were missing, x would be a
valid common ancestor.

30 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.4. Change Package Representation

Figure 2.11.: Use of different VCSs in Debian packages [80].

The core concept in the center of our research is the change package, which contains
a set of changes done to source code. The concepts used to represent a change package
and services operating on it is crucial for the functionality of the tool to be developed. The
main services needed in association with change packages are the following:

Change package creation: Changes done to the source code have to be collected and
bundled in a change package.

Change package application: It must be possible to apply the changes contained in a
change package to source files. This should even be possible if the source files are
not identical to the ones from which the changes were collected, although this may
introduce conflicts.

Change package check: It must be possible to determine if the changes contained in
a change package are already applied to a given set of source files, even if these
files were altered after the application. This service must be very reliable and must
produce neither false-negatives nor false-positives, because it is used during release
building to determine which change packages are yet to be applied to the source
code to build a certain release. If the services return wrong results, a change package
may be applied multiple times (which has no defined semantics and therefore may
produce arbitrary, undesirable results) or not at all (which is equally undesirable).

If these three services are provided efficiently, the rest of the desired functionality can
be realized rather easily. The possible implementation of these services greatly depends
on the representation of a change package. Thus, the main challenge is to find a suitable
representation for a change package. A representation is suitable, if a reasonable algorithm
for the services working on this representation can be found.

In the course of this thesis two possible representations for change packages were elab-
orated. The first, earlier approach uses a patch as change package representation. The
second approach uses branches in the repository of the version control system.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 31

Chapter 2. Preliminaries

2.4.1. Patches as Change Packages

Using a patch to implement the concept of a change package seems reasonable on first
sight: A patch is a file containing a set of changes, which quite precisely reflects the def-
inition of a change package. To be suitable, an algorithm for the three aforementioned
services, which works with patches, must be found. In the case of patches, following
mechanisms could be used:

Change package creation: A change package is created by creating the patch file.

Change package application: A change package is applied by applying the patch.

Change package check: This is where patches come to their limits: It is rather difficult
to check if a patch is included in a given source code. If the code was not changed
afterwards, a simple check for the changes in the patch file can yield a result. How-
ever, if the source code was changed afterwards (which is the more common case),
comparing the content and the changes in the patch will not yield a reliable result.
Thus, relying on the content is not suitable.

While the concepts of the first two services are rather straightforward, the last service is
quite challenging. There exist several approaches for the last service. One, for example,
is keeping a list of patches applied onto the source code and linking this list with the
version history in the repository. The problem with this approach is that it only works
if all patches are applied using the system which tracks their application. If a patch is
applied using common tools like the patch Unix command or the commands provided
by the used version control system, this patch will be un-tracked. Thus, the method is not
perfectly suitable.

Weißgerber et al. [81] proposed another method for identifying which patches were ap-
plied to a specific revision of a CVS repository, which could also be suitable to track the
patch application in other repositories.

In this thesis, however, the focus was laid on finding the best representation for change
packages. Since a better alternative was found (see next section) no further investigations
in finding a service for patch checking was done. However, a prototype for the patch
representation of change packages was created. It is based on Subversion. Because it
only relies on a small subset of Subversion’s features (actually only the patch creation; the
patch application is done by Eclipse if the patch is saved in unified diff format), it can
also be adapted to other version control systems easily. The prototype does not implement
the third service and thus only supports the use cases which do not rely on this service.
Nevertheless, this prototype has some relevance. This relevance originates from the fact
that the second, below-mentioned representation performs better but is limited to a small
set of version control systems. The patch mechanism, in contrast, works for almost all
version control systems.

2.4.2. Lightweight Branches

While patches allow the simple collection and application of changes, it is hard to derive
a reliable mechanism to decide if a patch is already applied to a set of source files. Be-
cause patches perform quite well when providing the first two aforementioned services,

32 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.4. Change Package Representation

the challenge consists in finding a representation which is more suitable for providing the
third service. Version control systems ensure that no changes, despite the ones introduced
by commits (and reliably logged), are done to the repository. So, a good approach for pro-
viding reliable change package checking is to make change packages reside directly in the
repository. By tying the representation closer to the repository, more of its tracking features
can be used.

The obvious choice for a change package representation which resides in the repository
is a branch. A branch represents changes done to the source code since the revision from
which the branch started to diverge. The services could be implemented for branches in
the following way:

Change package creation: A branch is created and changes are committed to this branch.

Change package application: A branch can be applied onto another branch of the repos-
itory by merging it into the other one.

Change package check: By checking the revision graph, it can be deducted whether a
branch has been merged into another one (see details below). However, the repos-
itory has to support a revision graph to allow this approach: The information from
which a revision was merged must be available.

The basic idea of checking if a change package is already merged into a given branch is
using the revision graph and performing a backward search (i.e. a search from a revision
into the direction of its predecessor revisions). The search starts from the head revision
of the given base branch which is to be checked for included change packages. If a revi-
sion identifying a change package branch (hereinafter called indicator revision) is found, a
positive answer is given. If the search does not yield the indicator revision of a change
package, a negative answer for this package is given. The representation of the indicator
revision depends on the version control system. If the branch head of a merged-in branch
is kept, this branch head can be used as indicator revision and stored in the change pack-
age. Otherwise the first commit on the branch can be used, for example.

If optimized correctly, the performance of this approach is quite high, even for large
revision graphs. A naive approach would be to walk the whole revision graph and check
each visited revision against each change package, so it would be in O(‖G‖ × ‖C‖) (with
‖G‖ denoting the size of the revision graph and ‖C‖ the amount of change packages). By
using a hash map from indicator revision to change package, the checking of one revision
against all change packages can be done in constant time yielding O(‖G‖). Even for large
revision graphs with a million commits, this can be executed in a few seconds or less.
In addition, the backward walking on a branch can be stopped whenever a revision is
reached which is older than the oldest indicator revision of all branches. So the search has
to be performed only on a the most recent parts of the tree. These optimizations enable an
execution of the search in less than a second on very large graphs and even while checking
against thousands of change packages.

A drawback of this approach is that it restricts the version control system to be used.
While patches are supported by most version control systems, or can even be used without
them, this approach puts some constraints on the version control system to be used:

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 33

Chapter 2. Preliminaries

First, the version control system must support branches. This is no big restriction as
most modern version control system do support this. The next limitation is more severe:
The version control system must support a revision graph which reveals two or more pre-
decessors of a revision which was created by merging. SVN, for example, is not able to
deliver this information and is therefore unsuitable for this approach (except the most
recent versions). Finally, the branches must be lightweight: Since one change package is
represented by one branch, numerous branches will exist concurrently in the repository.
A branch is considered lightweight, if a large number of branches can be created with-
out reducing the performance of the system and taking too much space. Additionally, the
creation and merging of branches should be fast and reliable and the merge algorithms
used should be sophisticated. They must be able to resolve most conflicts automatically,
because resolving conflicts is a cumbersome, error-prone work and would relativize the
gain the system offers.

One system which actively advertises its ability to maintain a large number of light-
weight branches is Git. It also advertises the use of sophisticated merge algorithms which
reduces the amounts of conflicts propagated to the user. Thus, Git was chosen for the
prototype implementation of the lightweight branch representation of change packages.

2.5. Data Dictionary

This section defines concepts which will be used in the remainder of this thesis, especially
in the requirements elicitation and analysis. Since many of them are not defined uniformly
in literature, it is important to consider the definitions provided here.

Repository A global location where the source code and other resources for a software
development project are stored. The repository should be readable by all developers,
so they can retrieve the latest source code to work on. Depending on the project,
the repository may either be written by developers, or the developers must send
their changes to designated persons which have access to the repository and add
the developers’ changes. In most modern software projects the repository will be
accessed via a version control system.

Workspace The location where a developer stores his working copy of the source code
for the development project. Commonly, this is a directory on the developer’s local
machine. The content of a workspace is obtained from the the repository, but may be
different due to the developer making modifications to it.

Release A release is a distribution of software, documentation, and support materials.
Only the process of assembling the final source code for the release is in the scope of
this thesis. Further actions like compiling this code, packaging it and distributing it
is not elaborated further. A release is associated to a set of work items. These items
describe the tasks to be done to create the final source code for the release.

Stream A stream is an ordered series of releases. A release that follows directly after
another one in a stream is called the successor of that release. For example, a software
development project could consist of an “internal” stream which is used for internal
testing releases and an “external” stream which is distributed to the public.

34 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

2.5. Data Dictionary

Change Package A change package is a set of changes. It must be “applicable”, i.e. it
must be possible to apply the changes in a change package to source files, even if
these files do not fully resemble the files from which the changes were recorded. It
must also be possible to revert the changes introduced by the application of a change
package.

Work Item A work item is any task in the software development process. It is assigned to
a specific person (“assignee”) who should execute this task and has a “state” which
shows how far the execution of this work item has advanced. This state is either
“not executed yet”, “executed but not reviewed yet”, or “resolved“ (= executed and
reviewed). When work items are associated with a release, they commonly refer
to implementing a new feature or fixing a bug. A change package can be assigned
to a work item, which means that the changes in this package are the result of the
execution of this task.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 35

Chapter 3.

Requirements Elicitation

The first step for the development of the tool, which applies the two approaches shown
in the previous chapter, is the requirements elicitation. Here, the functional and non-
functional requirements are gathered by elaborating scenarios and use cases of the system.

3.1. Functional Requirements

The functional requirements describe the features and services which the system must pro-
vide to fulfill its use cases. While some functional requirements are tied closely to one use
case (like the creation of change packages to the collect changes use case), others are re-
quired by almost all use cases (like the maintenance of the data model). The requirements
are grouped into four main categories which will be explained hereinafter. Section 3.4,
which depicts the use cases, will show which requirements relate to which use cases.

3.1.1. Data Model Related Requirements

This section depicts requirements related to the data model which has to be kept by the
program. Since the viewing, browsing, and alteration of this model is a central aspect of
the system, there are various requirements related to it.

FR 1: Data Model Maintenance

The main purpose of the system is to provide operations which use traceability links
between different software engineering concerns like features, work items, releases, and
streams. Therefore, the system must maintain a model of all these concerns. The different
model elements should be organized in a tidy manner which allows to find a specific ele-
ment easily even in big models. For example, a hierarchical organization of the elements
can be used. Each model element must have a name and description to allow the exact
specification of its meaning.

FR 2: Traceability Links Between Data

The data model must include traceability links between the various concerns. It must
be possible to set these links. For example, it must be possible to assign work items to a
release, associate a release to a stream, or attach a change package to a work item.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 37

Chapter 3. Requirements Elicitation

FR 3: Viewing of Data

One of the purposes of the system is to show the data model to the user. This allows to
gain an overview or inspect details concerning different aspects of a project. Therefore, the
system must provide ways to browse the data model and to search for specific elements in
it. Particularly, it must provide ways to follow links between model elements.

FR 4: Creation and Alteration of Data

The system must allow the creation and alteration of various model elements. For ex-
ample, it must be able to create releases and streams and alter their attributes like their
name and description. It must also be possible to delete model elements, if an element
was created accidentally.

FR 5: Data Persistency

The data model is being developed over time and has to be archived after the project is
finished. Thus, the data model has to be kept persistently; it must still be available after
restarting the tool.

FR 6: Data Collaboration Support

The aim of the tool is to track the work items and releases of whole software devel-
opment projects. Since there are many people working in such a project which have to
access the tool (release managers, reviewers, developers), the system must provide ways
to ensure that all these people can work on the data model of the project. It must be pos-
sible to share the project data with other users who can read from and write to it. It must
be ensured that concurrent access to the model does not result in a loss of data (e.g. lost
update).

3.1.2. Change Package Related Requirements

Functional requirements related to change packages mainly specify services which work
with them. The three services which have to be provided for a change package were iden-
tified in Section 2.4 and are reflected in the following requirements:

FR 7: Change Package Creation

The system shall provide the ability to create a change package. During this creation,
the changes in the local workspace of the user have to be gathered and represented in the
change package. Since change packages are part of the data model, the changes which
they represent also belong to this model, so all data model requirements (sharing with
other developers, persistency) apply to them as well.

FR 8: Change Package Application

The system must provide a service which applies the changes in a change package to a
set of source files automatically. This must be possible even if these source files are slightly
different to those from which the change package was created.

38 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.1. Functional Requirements

FR 9: Recognize Conflict

During the application of a change package a conflict can occur, since the source files to
which the change package is to be applied can be different from those of which the change
package was created. This is especially the case if the user has made modifications to these
files in the meantime. The system must be able to detect this conflict during the application
of a change package. It must then abort the application, insert conflict markers, and inform
the user about the conflict.

FR 10: Change Package Containment Checking

It must be possible to check whether the changes in a given change package are reflected
in a set of source files. This check must be very reliable and always yield a correct result.
Although this is quite difficult to achieve, it is very important because it is the basis for the
release building. Erroneous results will lead to change packages being omitted in a release
or applied twice.

3.1.3. Repository Related Requirements

For various use cases, the tool must provide services which communicate with the reposi-
tory to retrieve or upload changes or revisions, respectively.

FR 11: Find Local Source Code

Given a remote repository, the system has to be able to locate the source files in the local
workspace which represent the working copy retrieved from this repository. Particularly,
this includes that the system has to be able to decide whether a given directory contains
source files belonging to a specific remote repository. This is important for the release
building and change package application process, since it ensures that the changes are
applied to the correct files.

FR 12: Find Remote Repository

Given a directory in the local workspace which is under version control and a set of
possible remote repositories, the system must be able to compute the location of the remote
repository to which the directory belongs. This is applied when creating a stream from this
directory to link the stream to the correct remote repository.

FR 13: Fetch Release Head Revision

Before a release can be built by applying the change packages not yet applied, the head
revision of the release must exist in the local workspace. Thus, the system must be able to
retrieve this revision from the repository.

FR 14: Commit Changes to Repository

Once a release is built, the result has to be committed to the repository. Thus, the system
must provide services to achieve this. Once such commit is done, the system must provide
information to identify the revision created of this commit (e.g. by creating a tag or saving

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 39

Chapter 3. Requirements Elicitation

the revision number). This is important because the respective information has to be linked
to the release. This way, the built revision of the release can be found and accessed at any
time.

3.1.4. Further Requirements

FR 15: Release Error Checking

During the checking of a release, different errors can occur. The specific set of errors
which can occur depends on the change package representation and version control sys-
tem. For example, if the lightweight branch approach (cf. Section 2.4) is used, a change
package belonging to a release is represented as a branch in the repository. Here, it would
be an error if a change package branch does not fork from the tree on which the release
branch is located. All these errors which could possibly interfere with the release building
process must be detected to prevent erroneous results during the building.

FR 16: Change Log Assembling

The system must be able to assemble a changelog for a given release. This changelog
must include descriptions of all change packages associated to the release. The changelog
will be presented to the user while checking and building a release.

3.2. Non-Functional Requirements

Since the purpose of the tool is to aid developers in frequently occurring operations, the
responsiveness and usability were identified as two main non-functional requirements. Be-
cause the tool will be used to handle source code, which is a costly artifact of the software
development process, robustness is required to ensure the integrity of the managed code,
even in the presence of erroneous usage. Finally, implementation and interface of the tool are
restricted because it is to be implemented as an Eclipse plug-in built on top of the UNICASE

plug-in.

Responsiveness

Most of the operations the system provides must run quickly (less than 10 seconds) so
they can be used in the usual software development process without creating noticeable
delay. The building of a release can take longer since releases are not built as frequently
as the other operations will occur. Nevertheless, this step should perform as quickly as
possible as well.

Usability

The software must be intuitive and easy to use. It must provide functionality with as
few user interactions as possible. The functionality must be provided where the user an-
ticipates it and generally where the user “is” when he wants to access the functionality. For

40 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.3. Scenarios

example, when creating a change package, the user is normally in his software develop-
ment view and wants the functionality to be provided there instead of changing to another
program, window, or view.

Robustness

The tool will handle the source code of software development projects. Since the code
is a very costly artifact, the tool must be robust against erroneous user input. This mainly
means that the operation the system offers shall be somehow “undoable”: It must be pos-
sible to revoke the changes incorporated by an operation like the application of a change
package onto the local workspace.

Implementation and Interface

The system is to be built as an Eclipse plug-in. It therefore has to be written in Java.
For backward-compatibility purposes, it must compile correctly with Java 1.5. It is to be
integrated into the UNICASE plug-in. This means that its domain model should be stored
in UNICASE projects and should make use of (and extend) the unified model already pro-
vided by UNICASE. For example, UNICASE already provides a WorkItem model element.
This element is to be used to attach change packages to and to associate it to releases.

Furthermore, the plug-in must be built to work seamlessly with widespread version
control systems. This ensures that it can be used in many software development projects
relying on these systems for their version control.

3.3. Scenarios

The change tracking and release management workflow in the scope of this thesis can be
described with three common scenarios: The setup of a software project, the process of
assembling a release, and the common workflow of a developer.

The scenarios all happen in the same software development project. The development
team consists of three members: The team leader Helen and the two developers Tom and
Simone. The system to be developed is a WYSIWYG (“What you see is what you get”) ed-
itor for HTML pages, i.e. the editor should not display the HTML source code but rather
display the page like a browser would display it. The software is to be developed incre-
mentally; many internal and external versions are to be anticipated. Therefore, the team
wants to use tool support for the review and release management process.

3.3.1. Scenario “Project Setup”

At the start of the project, Helen wants to set up all components so the development can
begin. She creates the repository in which the development resources (documents, source
code, built products) will be stored for team collaboration. She creates the first stream for
the project called “internal” to hold internal releases. Then, she sets up the first release in
this stream called “internal v0.0.1”. After some meetings with Tom and Simone in which
the core features for the system under development are gathered, she decides which of
these features are to be included in the first internal release. The system allows Helen to

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 41

Chapter 3. Requirements Elicitation

save this decision. She chooses the features “basic user interface” for providing a basic
user interface which is the most important feature for the first internal release. In addition,
she chooses “caption support” and “table support” for supporting the HTML elements for
captions and tables, respectively.

3.3.2. Scenario “Development Workflow”

Helen has assigned the task to design and implement the basic user interface to Tom. Si-
mone is responsible for reviewing Tom’s work. First, Tom designs and implements the
feature. The system records the changes he does to the source code. After Tom has fin-
ished his implementation, he tells the system that he is done and that all the work he has
done belongs to the feature “basic user interface”. The system collects his changes and
links them to the task of implementing this feature.

Simone meets with Tom to review his work together. The system helps Simone with
the review by allowing her to retrieve the result of Tom’s work quickly and to point out
the changes he has done. Simone detects some severe bugs in Tom’s code and tells him
to fix them before the feature can be included in the release. She tells the system that the
feature is not finished yet. Tom fixes the bugs and tells the system to assign his changes to
the feature. Simone decides to review Tom’s code alone this time. She finds some minor
mistakes which she fixes herself. She tells the system that the feature is reviewed and can
be included into the release. Since she thinks that this feature is crucial for the development
of other features, she tells the system to immediately add this feature to the source code of
the release in the repository.

3.3.3. Scenario “Release Building”

Helen checks the status of the release daily. The system shows her which features of the
release are already implemented and reviewed. It also shows her which code changes for
those features are already included in the repository and which are not. The day after Tom
and Simone are finished with all features in the release Helen runs her daily check. The
system tells her that the release is ready to be built. It also shows that the code changes
for the “basic user interface” feature are already included in the repository. The changes
for the other two features are not yet included. She decides to build the release right away
and orders the system to build the release. After showing a summary of the release status
again, the system begins building the release autonomously: The source code for the final
release is assembled by the system; all the code changes for this release, which are not yet in
the repository, are applied to it. However, the system encounters a problem while applying
the not yet included code changes: The changes for the features “caption support” and
“table support” both include a change in line 55 in the source file “Decorator.java”. The
system is unable to decide in which way to combine these changes, thus it reports this
merge conflict to Helen. Helen combines the changes manually by editing the line in the
file. She then tells the system that she has resolved the conflict and orders it to go on with
the building process. After the system has finished merging all features into the source
code of the release, it commits the updates source code to the repository. The system
associates the release with the revision created in the repository to be able to retrieve it
later on.

42 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

3.4. Use Cases

The tool to be created supports the change tracking and release management workflow
in software projects. Thus, the actors interacting with the system are persons from the
development team. The following three actors are important for the change tracking and
release management workflow:

• The release manager is responsible for creating, building and releasing new versions
of the product (releases). He is also responsible for deciding which changes are to be
included in a release.

• Developers design and implement the system under development. They make chan-
ges to the source code and collect them in change packages.

• Reviewers review the change packages created by developers to check if they are cor-
rect and meet the quality demands. Reviewers can either be developers or dedicated
persons in the project.

Commit Change
Package

Review Change
Package

Reviewer

Resolve Conflicts Build Release

Check Release

Collect Changes
Assign to Work

Item

Assign Work
Items to Release

Create Release

Setup Stream

Release Manager

Developer

Unicase Change Tracking and Release Management

<<extend>>

<<include>>

<<include>>

<<extend>>
<<extend>>

<<participate>>

<<initiate>>

<<initiate>>

<<initiate>>

<<initiate>>

<<initiate>><<initiate>>

<<initiate>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3.1.: Use case overview

Figure 3.1 shows a UML use case diagram depicting an overview of all use cases which
are to be supported by the system. The use cases on the right are all related to the release
management process and are thus all initiated by the release manager. First, the release
manager must be able to setup a stream (use case Setup Stream). Then, he can create re-
leases in this stream (use case Create Release). He can choose which work items are to be
included in a release (use case Assign Work Items to Release). Later, when the developers

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 43

Chapter 3. Requirements Elicitation

make progress with the work items he can ask the system for the status of the release (use
case Check Release). When all work items for the release are resolved, the release can be
built (use case Build Release). This includes checking the release status again. During the
building process, conflicts can occur which have to be resolved before the building process
can go on (use case Resolve Conflicts).

The system must track changes developers make to allow these changes to be inspected
later on (use case Collect Changes). Changes collected by the system can then be associated
with a work item (use case Assign to Work Item). This way, the changes get connected to a
release (since releases include work items).

Finally, changes made by the developers must be reviewed. The system has to allow the
reviewer to review a set of changes made by a developer (Use case Review Change Package).
Therefore, the changes have to be applied to his workspace. This can cause conflicts which
have to be resolved (use case Resolve Conflicts). If the reviewer finds no flaws in the changes
and thinks that they should be added to the repository right away, he can do that right
away (use case Commit Change Package).

The following sections describe the use cases in detail. Each section starts with a short
introduction of the use case, followed by the details in tabular form. Afterwards, the par-
ticipating objects of the use cases, which were identified using Abbott’s natural language
analysis [112], are listed. Finally, functional requirements related to the use case are listed.
Note that functional requirements which are related to almost all use cases (like the main-
tenance of the data model or its persistency) are not included in these listings.

3.4.1. Use Case Setup Stream

In this use case, a new stream is created and configured. Since most projects will probably
have only a few streams, this happens rather infrequently.

Use Case Setup Stream

Actors Initiated by release manager

Flow of Events

User Steps System Steps

The release manager selects a project in his lo-
cal workspace and orders the system to create
a stream for this project.

The system asks the release manager for a
name for the stream and further details how
to embody the stream in a repository. These
details depend on the version control system
used and thus cannot be stated generally here.
The system also asks for a remote repository
to link the stream with. It tries to infer one
from the selected project and recommend the

44 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

usage of the inferred one.

The release manager provides the informa-
tion the system asks for and confirms his de-
cision.

The system creates the stream and sets up all
necessary data to embody it in the repository
appropriately. It also links the stream with the
selected or inferred remote repository.

Entry Condition The release manager has the permissions to
create a stream.

Exit Condition The stream has been set up successfully.

Quality Requirements The creation and set up shall take less than 30
seconds.

Exceptions • The repository in which to embody the
stream is not available.

• The release manager enters invalid infor-
mation (VCS dependent).

Participating objects: Stream, Repository
Related functional requirements:
• FR 2: Traceability Links Between Data
• FR 4: Creation and Alteration of Data
• FR 12: Find Remote Repository

3.4.2. Use Case Create Release

In this use case, a release on a selected stream is created. The term “created” means that
the system is notified that this release exists. Neither is the code for the release built, nor
are any work items or other information about the content of that release added to it. This
is done later in the use cases Build Release and Assign Work Items to Release.

Use Case Create Release

Actors Initiated by release manager

Flow of Events

User Steps System Steps

The release manager triggers the system’s
“create release” function.

The system asks the release manager for a
name for the release and for a stream to which

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 45

Chapter 3. Requirements Elicitation

the release should belong.

The release manager provides the informa-
tion the system asks for and confirms his de-
cision.

The system creates the release and associates
it to the stream.

Entry Condition The release manager has the rights to create a
release and a stream already exists.

Exit Condition The release has been created successfully.

Quality Requirements The creation shall take less than 10 seconds.

Exceptions None

Participating objects: Release, Stream
Related functional requirements:
• FR 4: Creation and Alteration of Data

3.4.3. Use Case Assign Work Items to Release

Work items are added to a release in this use case. This can be done directly after the
release has been created, or later if the work items to be included are not known at the
time the release is created. Of course, this use case can occur more than once per release.
If, for example, work items are determined and added iteratively, or if new work items
arise after the first set of items for a release has been added.

Use Case Assign Work Items to Release

Actors Initiated by release manager

Flow of Events

User Steps System Steps

The release manager chooses a set of work
items and a release and tells the system to as-
sign these work items to the release.

The system associates the selected work items
to the selected release. If a work item is al-
ready in the release, it is ignored.

46 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

Entry Condition The release is not built yet.

Exit Condition The selected work items have been added to
the release.

Quality Requirements The system must perform the assignment in
less than 1 second on average.

Exceptions None

Participating objects: WorkItem, Release
Related functional requirements:
• FR 2: Traceability Links Between Data
• FR 3: Viewing of Data

3.4.4. Use Case Check Release

After work items have been assigned to a release, the release manager can check the status
of this release. He is provided with an overview over all possibly interesting properties of
a release, like which work items have already been resolved or which work packages have
already been added to the source code.

Use Case Check Release

Actors Initiated by release manager

Flow of Events

User Steps System Steps

The release manager asks the system to check
a selected release.

The system fetches the latest revision of the
resources belonging to the release from the
repository and stores it in the local workspace.

The system processes the release and its re-
sources and calculates all necessary data.

The system shows an overview over all im-
portant properties and problems of the re-
lease. A list of all properties to be displayed
is shown below.

The user browses the shown information.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 47

Chapter 3. Requirements Elicitation

Entry Condition A release exists.

Exit Condition The user has been informed about properties
of the release.

Quality Requirements • The system must show as much informa-
tion as computable, even when an error oc-
curs (e.g. the repository cannot be reached).

• The system must detect and show any
problem that could prevent the release from
being built.

• The system must give hints about how to
fix problems it finds.

• The shown information must be well struc-
tured and presented.

• The system check must take less than 5
seconds (excluding the network delay for
retrieving the content from the repository
which may take very long but cannot be
avoided).

Exceptions The content of the release cannot be retrieved
from the repository.

Participating objects: Release, Stream, Revision, Resource, Repository, Local-
Workspace, ReleaseProperties, Problem, WorkItem, ChangePackage
Related functional requirements:
• FR 3: Viewing of Data
• FR 2: Traceability Links Between Data
• FR 10: Change Package Containment Checking
• FR 11: Find Local Source Code
• FR 13: Fetch Release Head Revision
• FR 15: Release Error Checking
• FR 16: Change Log Assembling

The properties and problems of a release to be displayed must include the following
items:

• An overview of the release progress. The release progress is monitored by showing
how many of the included work items have already been resolved.

• An overview of the build progress. This is monitored by showing how many change
packages associated to work items of the release are already contained in the head
revision of the stream in the repository to which the release is assigned.

• A short summary about the status of the release. The status can be one of the follow-
ing:

In progress Not all work items of the release have been resolved. It cannot be built
yet.

48 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

Ready to be built All work items have been resolved and no errors and warnings
were detected.

Building discouraged All work items have been resolved and no errors were de-
tected. However, warnings were found and thus the building of the release is
discouraged.

Erroneous Errors were found. The release cannot be built, even if all work items
have been resolved.

Built The release is already built.

• A detailed structural view. This view must show which work items are included in
the release and which change packages belong to them. The status of each work item
(whether it is already resolved) and change package (whether it is already contained
in the repository) shall be displayed as well.

• A changelog. The changelog is assembled by taking all descriptions of included
change packages.

• A list of problems, i.e. warnings and errors. Since the warnings and errors that can
occur depend on the version control system used for accessing the repository and
tracking local changes, they cannot be specified here. This main rule must hold: All
conditions that would make the building process impossible or would make it yield
erroneous results must be detected and presented as errors. All conditions that might
yield to an erroneous build result should be displayed as warnings.

3.4.5. Use Case Build Release

Once all work items in a release are resolved, the release can be built. The term “building”
refers to the process of applying all change packages to the source code of the release. This
yields the final source code which can be used to compile and publish the release.

Use Case Build Release

Actors Initiated by release manager

Flow of Events

User Steps System Steps

The release manager orders the system to
build a selected release.

Includes use case Check Release. I.e. the user
is once again shown the overview of the re-
lease properties. If a problem is revealed, the
building process must be aborted.

The system allows the release manager to
choose build details, e.g. to choose the name

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 49

Chapter 3. Requirements Elicitation

of a tag in the repository to identify the built
revision. Further details depend on the ver-
sion control system.

The release manager chooses the build details
and confirms his decision to build the release.

The system automatically builds the release:
Each change package associated to the release,
which has not yet been applied to the source
code of the release, is applied to it in the lo-
cal workspace. If a conflict occurs, the pro-
gram informs the user about it and pauses the
building process. After the release manager
has resolved the conflict (includes use case
Resolve Conflict), the building process is con-
tinued.

The system commits the assembled source
code of the release to the repository. The revi-
sion assigned to this commit by the repository
is associated to the release as “built revision”.
In addition, it can also be saved in the reposi-
tory by creating a tag.

The system informs the user about the suc-
cess of the building process.

Entry Condition The release is ready to be built.

Exit Condition The release is built successfully.

Quality Requirements • The building process must take less than 30
seconds per applied change package plus
maximum 5 minutes for other steps.

• The building must run autonomously as
long as no conflict occurs.

Exceptions • The repository cannot be reached.
• The release or its source code contain a

problem which prevents the release from
being built (cf. use case Check Release).

• A conflict occurs while applying the change
packages.

Participating objects: Release, ReleaseProperties, Problem, Repository, Re-
vision, ChangePackage, Resource, Conflict
Related functional requirements:
• FR 8: Change Package Application

50 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

• FR 9: Recognize Conflict
• FR 14: Commit Changes to Repository

3.4.6. Use Case Resolve Conflict

While building a release or applying a change package to the source files in the local
workspace, a conflict can occur. This conflict has to be resolved before the change package
application or the release building, respectively, can go on.

Use Case Resolve Conflict

Actors Initiated either by release manager or re-
viewer

Flow of Events

User Steps System Steps

The user generates a conflict by ordering the
system to apply a change package which can-
not be merged automatically to the source
files in the local workspace.

The system recognizes that a conflict has
occurred during the application, aborts the
merge process, and informs the user accord-
ingly.

The user resolves the conflict and notifies the
system about this fact.

The system continues the action which was
interrupted due to the conflict.

Entry Condition A change package is being applied to the local
workspace.

Exit Condition The conflict has been resolved and the system
has been notified about this fact.

Quality Requirements The system must point out where exactly the
conflict occurred (files, lines).

Exceptions None

Participating objects: Conflict, ChangePackage, LocalWorkspace, Resource
Related functional requirements:
• FR 9: Recognize Conflict

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 51

Chapter 3. Requirements Elicitation

3.4.7. Use Case Collect Changes

The developer who implements a feature or fixes a bug wants the system to track the
changes he incurs. These changes can then be assembled to a change package and associ-
ated with a work item in the use case Assign to Work Item.

Use Case Collect Changes

Actors Initiated by developer

Flow of Events

User Steps System Steps

The developer modifies the resources in his
local workspace.

The system tracks the changes performed by
the developer.

Once the developer has made all changes for
a specific work item (i.e. he fully implemented
a feature or fixed a bug), he notifies the system
to collect them.

The system asks for a name and location for
the change package.

The user enters the requested information
and confirms his decision.

The system creates a change package, collects
the changes in the work space and assigns
them to the created package.

Entry Condition The developer has the source code in his local
workspace so that he can modify it.

Exit Condition A change package has been created and con-
tains the collected changes.

Quality Requirements • The tracking of user changes must not re-
duce the responsiveness of the system while
making modifications.

• The creation of the change package must
take less than 10 seconds.

• The system must track the user all the time.
It shall not be necessary to start the tracking
explicitly.

52 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

• The changes in the change package must be
represented in a way which allows to ap-
ply it onto their machines (cf. Section 2.4
for possible representations).

Exceptions The change package cannot be created due
to a problem specific for the change package
representation. For example, if branches are
used, the VCS can raise an exception during
the creation of the branch.

Participating objects: Resource,LocalWorkspace, WorkItem, ChangePackage
Related functional requirements:
• FR 4: Creation and Alteration of Data
• FR 7: Change Package Creation

3.4.8. Use Case Assign to Work Item

After the developer has created a change package, he selects the work item to which the
changes in the package are related to and assigns the change package to this work item.

Use Case Assign to Work Item

Actors Initiated by developer

Flow of Events

User Steps System Steps

The developer notifies the system to assign a
selected change package to a work item.

The system presents the developer a selection
of all existing work items. It also gives the de-
veloper the possibility to create a new work
item.

The developer selects a work item to attach
the change package to.

The system assigns the change package to the
selected work item.

Entry Condition The user has created a change package and a
work item exists.

Exit Condition The selected change package is assigned to
the selected work item.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 53

Chapter 3. Requirements Elicitation

Quality Requirements The system must support the user in the de-
cision which work item to assign the change
package to. This can be achieved by appropri-
ate sorting, searching and recommendation
mechanisms.

Exceptions None

Participating objects: ChangePackage, WorkItem
Related functional requirements:
• FR 2: Traceability Links Between Data
• FR 3: Viewing of Data

3.4.9. Use Case Review Change Package

For quality assurance purposes, any source code should be reviewed before it is added to
the repository. Therefore, one or more reviewers check the source code. The developer can
participate in such review to explain his code and answer questions. The system should
support this by allowing the reviewer to inspect and test the changes contained in a change
package.

Use Case Review Change Package

Actors Initiated by reviewer

Flow of Events

User Steps System Steps

The user ensures that he has the version of the
source code in his local workspace on which
he wants to apply the change package to be
reviewed.

The reviewer notifies the system to apply a
specific change package.

The system applies the change package’s con-
tents to the resources in the local workspace of
the reviewer. If a conflict occurs, the program
informs the user about it. After the release
manager has resolved the conflict (include
use case Resolve Conflict) he can go on.

54 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

3.4. Use Cases

The reviewer checks the changes. He informs
the developer about problems he finds. If no
problems exist, he sets the associated work
item to “resolved” and thus allows it to be
added to the repository.

If the reviewer is of the opinion that the
change package should be committed to the
repository directly, he can do this (includes
use case Commit Change Package).

Entry Condition The developer has finished a work item and
has enabled it for being reviewed.

Exit Condition The reviewer has reviewed the change pack-
age and set its status to “resolved”.

Quality Requirements • The application of the change package to
the workspace must take less than 10 sec-
onds.

• The system must support the reviewer by
providing ways to highlight the changes in
the workspace.

Exceptions The reviewer’s workspace is in a state which
does not allow the application of the change
package (depending on the change package
representation).

Participating objects: ChangePackage, Resource, LocalWorkspace, Release
Related functional requirements:
• FR 2: Traceability Links Between Data
• FR 3: Viewing of Data
• FR 8: Change Package Application
• FR 9: Recognize Conflict

3.4.10. Use Case Commit Change Package

After checking a specific change package, a reviewer can decide to commit it to the repos-
itory right away. This is in contrast to applying the changes when a release is built. Direct
commit of a change package can be useful if other change packages rely on code in this
change package.

Note that the changes are committed to the repository location corresponding to the
revision on which the change package was applied. For example, if a version control
system with branches is used, the commit will be on the currently checked-out branch.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 55

Chapter 3. Requirements Elicitation

Use Case Commit Change Package

Actors Initiated by reviewer

Flow of Events

User Steps System Steps

After having reviewed a change package, the
reviewer notifies the system to commit the
changes in his local workspace to the repos-
itory.

The system commits the changes to the repos-
itory.

Entry Condition The system has applied a change package to
the local workspace of the reviewer

Exit Condition The changes are committed to the repository.

Quality Requirements The commit to the repository must take less
than 30 seconds on average.

Exceptions • The repository cannot be reached.
• The changes cannot be committed (depend-

ing on the version control system).

Participating objects: ChangePackage, LocalWorkspace, Repository, Release
Related functional requirements:
• FR 12: Find Remote Repository
• FR 14: Commit Changes to Repository

56 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

Chapter 4.

Requirements Analysis

This chapter contains the analysis of the requirements which were identified previously.
The section starts with the static domain model containing entity objects identified in the
use cases. Afterwards, boundary and control objects are added. Finally, the dynamic be-
haviour is exemplarily described.

4.1. Entity Objects

The entity objects are the core data model identified from the requirements elicitation.
They depict concepts from the solution domain. The concepts were divided into three
main parts which will be explained one by one. These are the following:

CASE This package contains classes which are to be included in the CASE data model
and have to be included into the CASE documents. They form the link to the rest of
the CASE system.

Revision Handling This package contains the classes for tracking the changes in the lo-
cal workspace, the communication with the repository and the versioning of the re-
sources. The classes in this package will probably not be handled by the tool itself
but by the version control system with which the tool collaborates.

Release Checking Here, data which is generated during the checking of a release is con-
tained. Thus, the classes in this package are transient and need to exist only during
the checking.

4.1.1. CASE Objects

The CASE package is depicted in Figure 4.1. The class depicting a development branch
in the software development project is the Stream. Streams are associated to a so-called
RepositoryStream. While a stream models a set of consecutive releases, the repository
stream depicts the place of the stream in the repository. Such repository stream has a
RepositoryLocation. This location contains information where to find and how to
access the repository in which the repository stream is contained. There are two classes
of the revision handling package to which the objects in the CASE package have links.
These conceptual links are all indirect (they won’t be simple associations in the resulting
object design). They depend on the final implementation of the revision handling. A
repository stream is linked to a Revision which depicts the head revision of this stream
in the repository. A repository stream is not associated with a Branch class, although this

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 57

Chapter 4. Requirements Analysis

CASE Data

Repository Revision

Stream Release

RepositoryLocation

WorkItem

ChangePackageRepositoryStream RepositoryRevision

1

0..*

1

1

1

0..*

0..*

0..*0..1

1

1

0..*

1

0..1

0..*1

0..*0..*0..*1

is head of

points to

pointsTo

is built revision of is result ofuses

is located at

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.1.: The entity classes of the CASE package

would be a natural implementation of a stream in most version control systems. However,
this would restrict the solution to using a versioning system which provides branches.
By demanding only a head revision for a stream, the final implementation can also use
systems that do not support the concept of branches. A repository location points to a
Repository. This link is also indirect and can be realized for example by saving the
URL of a repository accessible over the Internet. By having the link chain Stream →
RepositoryStream→ RepositoryLocation, it is possible to exactly determine where
the latest code for a specific stream can be found and to retrieve this code. This is important
for building the release.

The core class for the release management is the Release. A release always belongs
to exactly one stream. A stream in return often contains a growing number of releases.
The source code of a release which is not built yet can be obtained by following the link
chain Release→ Stream→ RepositoryStream→ RepositoryLocation. The head
revision of the stream will contain the latest resources which can be used to build the
release. Once a release is built, the revision which contains the assembled source code is
saved as a RepositoryRevision and associated to the release as “built revision”. A
repository revision, as the name states, is loosely linked to a revision in a repository. Such
link can for example be established by saving the revision number (SVN) or the commit
hash (Git). By keeping this link to the revision, the code of a built release can be retrieved
from the repository at any time.

If only the aforementioned classes are used, there is no traceability from a release to the

58 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

4.1. Entity Objects

source code changes it should contain. This link is established over WorkItems. A work
item is a dedicated task or set of tasks to be accomplished in the software development
process. A release may contain a number of work items. If a work item is contained in a
release, this means that the result of the work must be included in the final source code
of this release. The code changes which are the result of a work item are gathered in a
ChangePackage. Once a change package is created, it is attached to the corresponding
work item. The work item acts as a bridge between the tracked code changes and the
release management. It is also important for code reviews: The attached change package
allows the system to present the reviewer the attached code changes. If all reviews for a
work item are concluded, its status can be set to “resolved”. Once all work items associated
to a release are resolved, the release is ready to be built and published.

4.1.2. Revision Handling Classes

Revision Handling

Workspace

Repository Revision

File

0..*

0..*

0..*0..*

0..*1

contains

contains

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.2.: The entity classes of the revision handling package

The revision handling package is shown in Figure 4.2. The classes in this package reflect
the change tracking and versioning tasks which will probably be executed by dedicated
version control systems in the final implementation. Only the basic properties of a ver-
sion control system were assumed here. This allows for a wide variety of version control
systems to be used or even to implement a version of the tool which does not require a
version control system, but fulfills the tasks in this package itself. For example, not even
branches in the repository were included in the model.

The starting point for the versioning is a Repository. This is a central storage for the
source code of a project. It contains Revisions which depict versions of the Files (source
code and other files to be versioned) of a project. There is also the LocalWorkspace in
which the developer has his working copy of the project files. He performs changes in
this workspace which are tracked by the system. The system can commit the files in his
workspace to the repository, thus creating a new revision in the repository containing the
files. A revision can also be pulled from the repository, replacing the files in the workspace
of a developer with the ones stored in the revision.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 59

Chapter 4. Requirements Analysis

Release Checking

ReleaseReleaseProperties

Problem

Warning Error

0..*

1

10..*

belong to

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.3.: The entity classes of the release checking package

4.1.3. Release Checking Classes

The classes in the release checking package which are depicted in Figure 4.2 model tran-
sient data which is created during the checking of a release and then presented to the
release manager. The ReleaseProperties class contains all data generated during the
checking of a specific release. It has an association to the Release which was checked to
generate the properties. It contains Problems that were found during the checking. Prob-
lems can either be Errors which prevent the release from being built or Warnings which
do not prevent but discourage the building of the release. Other content of the release
properties depend on the version control system used and thus cannot be modelled here.

4.2. Boundary & Control Objects

The boundary and control objects are used to operate on the entity objects to enable the
work flow of the identified use cases. The boundary objects form the interface which allow
the user to interact with the system. They send the commands from the user to the control
objects. These objects are usually created by the boundary objects at the beginning of a use
case. They create, query and modify the entity objects to form the system behaviour in a
specific use case. They return the results to the boundary objects which present them to
the user.

For most use cases, exactly one boundary and one control object were modeled to handle
this use case. An exception to this is the VersioningManager. It was chosen as a dedi-
cated control object which controls all functionality usually associated to a version control
system. Thus, the VersioningManager must access the LocalWorkspace and track
changes in it. Furthermore, it must be able to commit to and fetch from a Repository. Al-
though accessing repositories and monitoring the local workspace are two different tasks,
they were initially combined in the VersioningManager since accessing the repository

60 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

4.2. Boundary & Control Objects

always also embodies reading or writing resources from or to the local workspace, respec-
tively. Another exception for the one-control-per-use-case rule is the missing control object
for the Resolve Conflict use case. Since this use case needs almost no control functionality
of the system (the user has to resolve the conflicts manually and then notify the system),
this control is included in the two control objects for the use cases which extend the resolve
conflict use case.

This section shows which of the boundary and control options interact with which entity
objects. It is divided into three subsections, each of them showing and explaining the
boundary and control objects used for a set of use cases which access similar entity objects.
Only the entity objects which are accessed by the boundary and control objects directly
are shown in the class diagrams. Other classes of the entity model are omitted. Also
transitive dependencies are omitted for readability purposes. In the class diagrams used,
the boundary and control objects are annotated with their respective stereotypes. The
entity objects’ stereotype is omitted. Thus, a class without a stereotype is considered an
entity object.

4.2.1. Change Package Related Objects

In this section, all use cases related to the work with change packages are explained. A
class diagram depicting the related classes is shown in Figure 4.4.

<<control>>
VersioningManager

<<boundary>>
CommitChangePackageDialog

<<boundary>>
ReviewChangePackageDialog

<<control>>
ReviewChangePackageController

<<boundary>>
CreateChangePackageDialog

<<control>>
CreateChangePackageController

<<control>>
CommitChangePackageController

WorkItem

ChangePackage

LocalWorkspace

Repository

1

1

1 1

0..*

0..*

1
1

1

1

is result of

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.4.: Change package related classes

All control objects have an association to the VersioningManager class. As already
mentioned, this control class handles all actions related to the local workspace and the
communication with the repository. It has access to the LocalWorkspace object repre-
senting the workspace so that it can alter and query it. Actions performed by the version-
ing manager include retrieving the changes from the workspace, applying changes onto it,
committing its content to a repository, or fetching resources from a repository.

The CreateChangePackageController and CreateChangePackageDialog clas-
ses are the control and boundary classes handling the use cases Collect Changes and Assign
to Work Item. Since the latter use case is included by the former one, these two can be

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 61

Chapter 4. Requirements Analysis

handled by one set of classes. The association to the VersioningManager is needed to
gather the changes from the workspace. Besides this association, the controller is depen-
dent to the WorkItem and the ChangePackage class since it creates the change package
and attaches it to a selected work item.

The ReviewController and ReviewDialog are responsible for the Review Change
Package use case. The controller needs access to the VersioningManager to apply the
changes in the change package to the local workspace. It also has dependencies to the
WorkItem and the ChangePackage: The change package is the one selected to be re-
viewed. The “resolved” status of the work item connected to the change package has to be
set if the changes are accepted by the reviewer.

The CommitChangePackageController and CommitChangePackageDialog han-
dle the “commit change package” use case. The controller has access to the VersionMan-
ager since it needs to commit the resources in the LocalWorkspace to a Repository.

4.2.2. Release & Stream Setup Related Objects

The boundary and control classes related to the creation and setup of streams and releases
are displayed in Figure 4.5.

<<control>>
SetupStreamController

<<boundary>>
SetupStreamDialog

<<boundary>>
AssignWorkItemDialog

<<control>>
CreateReleaseController

<<boundary>>
CreateReleaseDialog

<<control>>
AssignWorkItemController

Stream

Release

RepositoryLocation

WorkItem

RepositoryStream

0..*

0..*

1

0..*

0..*

1

1

1

located at

uses

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.5.: Release & stream setup related classes

62 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

4.2. Boundary & Control Objects

The first use case for a development project is Setup Stream which creates and configures
a new stream. The boundary and control classes for this use case are the SetupStream-
Dialog and SetupStreamController classes. The controller creates a Stream and an
associated RepositoryStream. In addition, it will either create or reuse a Reposito-
ryLocation for the RepositoryStream.

The next use case is Create Release to add a new release to a stream. The control class for
this use case is CreateReleaseController, the boundary object is CreateRelease-
Dialog. The controller depends on the Release and Stream, since it creates a Release
object and needs a Stream to add the newly created release to.

The final use case in the release setup process is Assign Work Items to Release, handled by
the AssignWorkItemController and AssignWorkItemDialog. The controller needs
a WorkItem and a Release to assign the former to the latter.

4.2.3. Release Building Related Objects

The building of a release contains the actual Build Release use case and the Check Release
use case which is included in the building process but can also be triggered separately.
The class diagram for these use cases is depicted in Figure 4.6.

Release

RepositoryRevision

<<control>>
CheckReleaseController

<<control>>
BuildReleaseController

<<boundary>>
CheckReleaseDialog

<<boundary>>
BuildReleaseDialog

<<control>>
VersioningManager

LocalWorkspace

ReleaseProperties

RemoteRepository
1

1

1 1

0..1

1

1

1

1

1

is built revision of

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.6.: Release building related classes

Checking a release is controlled by the CheckReleaseController. The boundary ob-
ject communicating with the user is the CheckReleaseDialog. The controller needs a
Release to be checked. The check produces a ReleaseProperties object. The con-
troller also needs a link to the VersioningManager to fetch the latest revision of the

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 63

Chapter 4. Requirements Analysis

release’s stream from the Repository to the LocalWorkspace and to receive informa-
tion about the changes in the local workspace.

The release building is controlled by the BuildReleaseController. Here, the bound-
ary object is the BuildReleaseDialog. In addition to the build controller, the dialog also
uses a CheckReleaseController to perform the mandatory checking before building.
The VersioningManager is associated to the build release controller, since building a
release includes merging the change packages of the release in the LocalWorkspace and
then committing the result to the Repository. The controller has dependencies to the
Release built by it and the RepositoryRevision, which is created to tag the built re-
vision of the release in the repository.

4.3. Dynamic Behaviour

This section describes the dynamic behaviour of selected use cases, namely the ones with
the most complex dynamic behaviour: Checking and building a release. The behaviour of
other use cases is rather trivial and can easily be inferred from the use case descriptions.

4.3.1. Release Checking

Before a release can be built, it must be checked. In addition, checks can also occur without
the intention to build the release. Figure 4.7 shows a sequence diagram depicting the
dynamic behaviour of the Check Release use case. Note that this is the version where the
Check Release use case is included in the Build Release use case. Thus, the release manager
communicates with the BuildReleaseDialog, not with the CheckReleaseDialog.

The use case starts with the user choosing to build a release (build(release)). The
BuildReleaseDialog creates a CheckReleaseController and orders it to check the
release. The controller first asks the VersioningManager to fetch the latest revision of
the source code of the release from the repository. The manager retrieves the repository
(and other information like its Stream) from the Release to be built. It then transfers the
latest revision to the local workspace and returns the control to the controller. Next, the
controller asks the VersionManager to calculate the merge information of the release.
The merge information of a release contains the information which change packages are
already merged in the source code of the release. To compute this information, the Ver-
sionManager needs the change packages contained in the release and therefore queries
the Release object for them. After having received the merge information, the controller
creates a ReleaseProperties object in which the results of the checks will be stored.
Now, the controller performs the different checks and gathers their results. Which checks
are to be performed is implementation dependent. After the checks are completed the re-
sults are stored in the previously created ReleaseProperties object. These results also
contain the merge information. Every problem that is revealed during the checks is also
stored in the properties. Finally, the properties, which are now filled with the problems
and other checking results, are returned to the BuildReleaseDialog. This boundary
object presents them to the user. The controller object is no longer needed and therefore
destroyed1. The release manager is done after inspecting the changes and can close the

1Note that the “destroy” message is not shown here because it is not important and would only increase the

64 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

4.3. Dynamic Behaviour

loop

[problemFound]

release :
Release

props :
ReleaseProperties

<<control>>
: VersioningManager

<<control>>
: CheckReleaseController

<<boundary>>
: BuildReleaseDialog

ReleaseManager

changePackages

getChangePackages()

performChecks()

repository

getRepository()

setResults(results)

fetchFromRepository(release)

<<create>>

addProblem(problem)

showResults(props)
props

mergeInformation

getMergeInformation(release)

<<create>>

check(release)

build(release)

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.7.: Dynamic behaviour of the Check Release use case

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 65

Chapter 4. Requirements Analysis

dialog, if he only wants to check the release without building it. In case of the Build Release
use case, the release manager can now choose to build the release if no errors occurred.
The next section shows how the Build Release use case continues.

4.3.2. Release Building

loop

[conflictOccurred]

[unappliedChangePackageExists()]

opt

release :
Release

<<boundary>>
: BuildReleaseDialog

ReleaseManager

<<control>>
: BuildReleaseController

<<control>>
: VersioningManager

revision
repository

success

getRepository()

setBuiltRevision(revision)

<<create>>

continue()

showConflict()

build(props, details)

success

setBuildDetails(details)

continue()

showConflict()

confirmBuilding()

resolveConflict()

commit(release)

apply(changePackage)

conflictOccurred

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 4.8.: Dynamic behaviour of the Build Release use case

The Build Release use case starts with the Check Release use case as described in the pre-
vious section. After the release manager has inspected the changes and no errors were
found, he can decide to build the release. Figure 4.8 shows the dynamic behaviour from
this point on. If the release manager decides to build the release, he first enters the build
details into the BuildReleaseDialog and then confirms his decision to build the re-
lease. The dialog creates a BuildReleaseController object to handle the rest of the
use case. The dialog sends the build message to the controller. This message contains the
build details entered by the user and the release properties (props) which were computed

complexity of the diagram

66 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

4.3. Dynamic Behaviour

before, during the release checking. In particular, these properties contain a link to the
release itself and to the merge information, depicting which change packages have not yet
been applied to the source files in the local workspace. The controller now processes each
un-merged change package one by one: The VersioningManager object is ordered to
apply the change package to the local workspace. If a conflict occurs during the merging
of the changes contained in the package, the controller is notified about this fact. It calls
the dialog to present the conflict to the user. Once the user is informed about the conflict,
he must resolve it and then order the dialog to continue the building process. Once all
change packages are applied, the workspace contains the final version of source files for
this release. The controller orders the versioning manager to commit the content of the
workspace to the repository. The version manager queries the release for the repository
to which to commit the resources. Once the versioning manager has committed the re-
sources to the repository, it receives an identification for the revision of this commit from
the repository (here only called revision). It sends the revision to the controller, which
stores it in the release as built revision. In addition, it can also create a tag in the repository
to mark the revision of the release. This fact was omitted in the diagram because it is not
assumed that the repository must support tagging. The release building is now finished
and the controller notifies the dialog about the success. The dialog in turn notifies the user.
The use case is finished and the controller is destroyed.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 67

Chapter 5.

System Design

After the previous chapter has analyzed the requirements in a solution independent man-
ner, this chapter begins with the prototype’s design. It starts with a definition of the design
goals which will have influence on the following design. Next, the subsystem decomposi-
tion is elaborated: First, the general architecture of the prototype is explained, followed by
the actual decomposition into subsystems. Finally, the subsystem decomposition contains
the mapping of the subsystems to components. Afterwards, the previously identified com-
ponents are mapped to hardware. The chapter ends with a summary of further decisions
concerning system design. Here, topics like persistent data management, access control,
global control flow, and boundary conditions are described. These topics play only a mi-
nor role for the prototype, as solutions for most of them are already provided by the host
environment (Eclipse and UNICASE).

5.1. Design Goals

The design goals embody properties which the design must ensure. Most of them have
been inferred from non-functional requirements. Others originate from the time scope of
this thesis and from the desire to make the tool easily adaptable to different version control
systems.

5.1.1. Robustness & Reliability

The tool works with the source code in the software development process. It merges ver-
sions of source files, fetches source files from the repository and commits others to the
repository. Source code is an expensive artifact and thus has to be protected. The design
must ensure that the source files handled with the tool are by no means destroyed or dam-
aged. The integrity of the data in the repository must be kept at all costs. In addition, it
has to provide mechanisms to undo accidental changes, like the application of a change
package to the workspace comprising the wrong version of the files or the building of a
release with missing action items.

5.1.2. Time & Manpower

The size of the prototype is limited to the prescribed time of a master’s thesis, which is six
months. During this time, the thesis itself and the implementation of the prototype has to
be finished. Due to the nature of a master’s thesis, it has to be performed by one person;
no further designers may be employed.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 69

Chapter 5. System Design

5.1.3. Adaptability

The tool is to be designed for collaborating with different version control systems and
must be able to support different change package representations. This goal emerges from
the fact that even the prototype supports two version control systems and change package
representations, as stated in Section 2.4. In addition, the prototype should be designed to
allow the easy implementation of support for additional version control systems. The need
for this arises because the prototype will become a new feature of UNICASE. As the aim
of UNICASE is to be a widely applicable CASE tool, it must be usable in as many develop-
ment projects as possible. Since different development projects work with different version
control systems, the tool has to support as many version control systems as possible. The
tool and UNICASE are open source, so teams wanting to use them for their development
projects can even implement the support for their version control system themselves. In
addition, if new, more sophisticated version control systems are developed, the tool can
quickly be adapted to work with these systems, thus staying up-to-date.

5.1.4. Utility

The utility design goal emerges from the two non-functional requirements “usability” and
“responsiveness”. The tool is useful only if users can use it quickly and efficiently. If
the program does not respond quickly enough or requires much effort to learn and use,
the gain it offers by supporting reviews and release building will be worth less than the
time its appliance consumes. Most operations should be local. Network communication
should take place only when absolutely necessary as it reduces the responsiveness. In
addition, this design goal enforces the careful design of the user interface, to be as intuitive
as possible. The functionality should be located in the UI where the user expects it.

5.1.5. Integration with Existing Systems

As already mentioned, the prototype is to be integrated into the UNICASE plug-in for
Eclipse. Consequently, the prototype has to consist of one or more plug-ins. Therefore,
the prototype must be written in the Java programming language and can make use of all
the features, frameworks and toolkits the Eclipse platform offers. The prototype’s user in-
terface must extend the existing Eclipse user interface. This is achieved by adding buttons,
menus, views and dialogs at appropriate positions.

The prototype’s CASE data model must be integrated into the unified model of UNI-
CASE, because the model elements of this plug-in (like releases, change packages, and
streams) have to be stored in UNICASE projects. The data model used by UNICASE is de-
veloped model driven. It is modeled using the Eclipse modeling framework (EMF). The
java code for the model classes is generated from the model by EMF. To integrate additional
classes into this model, the additional classes also have to be modelled and generated with
EMF.

The user interface of the tool should be included into the UNICASE user interface seam-
lessly. This should be done by adding buttons to the model element editor of the UNICASE

perspective and pop-up menus when appropriate model elements are shown in the editor.
For example, when a release is shown in the model element editor, a button for checking

70 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

5.2. Subsystem Decomposition

and building the release should be shown in the menu bar of the editor.
Besides the integration with Eclipse and UNICASE, the prototype also should make use

of common version control systems. To allow the support of different version control sys-
tems, a mechanism for adding support for additional systems must be provided by the
prototype (cf. design goal “adaptability”). The version control system plug-ins to be sup-
ported are Subclipse [113], which is an implementation of the SVN versioning system, and
JGit [114] / EGit [115], which together form an implementation of the Git versioning sys-
tem. The prototype should make use of as many desirable features these plug-ins offer as
possible. An example for this would be to show their respective conflict resolution views
if a conflict occurs, which depicts details about the location of the conflict and aids in the
resolution process.

5.2. Subsystem Decomposition

The aim of the subsystem decomposition is the division of the system into replaceable
subsystems with defined interfaces, dependencies, and responsibilities. The aim is to cre-
ate subsystems which focus on one task (high cohesion) while not introducing too many
dependencies between subsystems (low coupling). With low coupling, changes in one sys-
tem are less likely to enforce changes in other systems, thus increasing the maintainability
of the prototype. High cohesion also increases maintainability by setting clear and sharp
responsibilities per subsystem. If each subsystem has exactly one clearly defined purpose,
then developers can understand the system faster and make changes to the correct subsys-
tem.

5.2.1. Architecture Overview

The basic architecture of the prototype is a three layer architecture: The bottom layer is the
data model which has no dependencies on other systems, but most other systems query
and alter it. The middle layer is the business logic layer containing classes responsible for
the functionality of the plug-in. The business logic accesses the model layer. The topmost
layer is the user interface (UI). As a basic design principle, the business logic should never
depend on the user interface. Instead, the user interface only calls the business logic to
access functionality. The observer design pattern may be used to allow notification from
the business logic to the UI without introducing dependencies. The UI also accesses the
model directly to display parts of it, so this is an open architecture, as defined by Rumbaugh
et al. [116].

5.2.2. Selection of Off-The-Shelf Components

The integration with existing systems as a design goal has a large influence on the selection
of off-the-shelf components. Since the tool is to be integrated into the Eclipse platform
and the UNICASE plug-in, many components like the persistency management, the access
control and the version control of the CASE documents is already provided by the host
environment, so no own components for these tasks have to be designed.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 71

Chapter 5. System Design

The aim of the tool is to provide functionality by using features of version control sys-
tems, so the management of the repository and the changes in the workspace is also han-
dled by an off-the-shelf-component: the version control system.

The handling of the unified model of UNICASE and the repository and workspace man-
agement carried out by the version control systems already embody two important aspects
of the required functionality. The rest of the functionality, i.e. the data model, the controller
classes and the user interface, does not exist as a reusable off-the-shelf component. Thus,
it has to be self-implemented.

There are use cases which are thoroughly implemented by the chosen off-the-shelf com-
ponents. Therefore, the classes identified for them in the requirements analysis will not be
reflected in the final system and object design. The following use cases are provided by
off-the-shelf components:

Use case Create Release Since a release will be modelled as an element of the unified
model, its creation can be accomplished with UNICASE, as it supports the creation of
any model elements belonging to the unified model.

Use case Assign Work Items to Release The model element editor of UNICASE is able
to assign work items to releases.

Use case Commit Change Package After changes are applied to the local workspace of
a developer, they can easily be committed to the repository by using only function-
ality of the version control system (i.e. the commit command).

5.2.3. Subsystems

org.unicase.changetracking

org.eclipse

org.tigris.subclipse

org.unicase

ui

model

model.edit

controllers

vcs

adapter

jgit

egitworkspace

modeI

git

subclipse

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 5.1.: The subsystem decomposition

Figure 5.1 shows a UML package diagram depicting the subsystem decomposition of
the prototype. It also shows the dependencies on off-the-shelf components. The depen-
dencies on packages of the Eclipse platform are not shown, since this would complicate

72 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

5.2. Subsystem Decomposition

the diagram. In addition, these dependencies are not important as the Eclipse platform
is the host environment for the plug-in and thus its classes can be regarded as a globally
accessible standard library.

The system boundary for the prototype is the org.unicase.changetracking pack-
age (shown in light-blue). All packages inside belong to the prototype. The other pack-
ages depict off-the-shelf-components (shown in red). The org.unicase package de-
picts systems of the UNICASE plug-in, which is the basis for the prototype. The package
org.tigris.subclipse is the Eclipse version of the SVN version control system. The
packages below in the org.eclipse package are the Eclipse Git implementation. The
dotted lines in the main package separate the three architectural layers. The data model
subsystem is shown in green, the business logic subsystems are shown in turquoise, and
the UI subsystems in blue.

The lowest layer in the prototype consists of the model package. It contains the CASE
data model which consists of classes generated by the Eclipse modelling framework. This
data model is built upon the UNICASE data model and thus has a dependency on it. The
model.edit package is also generated by EMF and contains classes for editing and view-
ing the model.

The vcs package contains all classes related to handling the version control system used
by the prototype. However, it only contains classes which are common to all version con-
trol systems. To reach the design goal of adaptability to different version control systems, it
is obvious that there have to exist classes which access one special version control system.
The adapter design pattern is used to provide uniform interfaces for all version control
systems (cf. Section 6.6). The vcs package defines the interfaces which have to be pro-
vided by the adapters for the various version control systems and contains code to access
these adapters appropriately. This plug-in therefore acts as a façade for the version control
system: All other packages should communicate only with the vcs package for issuing
version control commands (despite of the different version control adapter packages). All
adapters for version control systems reside in the adapter package. This package de-
pends on the vcs package, because the adapters implement the interfaces defined in it.
The two adapters to be implemented for the prototype are the ones for the Subclipse SVN
implementation and the JGit/EGit Git implementation. They are stored in the subclipse
and git subsystems, respectively. They have dependencies on their respective version
control implementation because they access it directly. The vcs package depends on the
model package because it uses model elements (like change packages) to read and store
information. It also depends on the workspace package of UNICASE because it uses the
UNICASE command framework (cf. Section 6.5) to issue version control commands. This
framework is located in the workspace package.

The handling of the control flow of the use cases is provided by the controllers sub-
system. All control classes reside in this package. This subsystem is dependent on the
model because the controllers create, alter and query model element classes. The sub-
system also has a dependency on the vcs subsystem because it triggers different version
control functionality depending on the use case to be executed.

The topmost layer of the prototype is the ui subsystem which contains the user inter-
face. It creates and starts the different use case controllers and is thus dependent on the
controllers subsystem. Its dependency on the model and the model.edit package
originates from its need to display model elements.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 73

Chapter 5. System Design

5.2.4. Components (Plug-Ins)

Since the prototype is built for the Eclipse platform, it consists of plug-ins. A plug-in is
the smallest indivisible unit which can be deployed independently to a hardware device.
Thus, a plug-in corresponds to a component on the lowest level in the hardware/software
mapping.

<<plug-in>>
org.unicase.changetracking

<<plug-in>>
org.unicase.changetracking.model

<<plug-in>>
org.unicase.changetracking.model.edit

<<plug-in>>
org.unicase.changetracking.ui

<<plug-in>>
org.unicase.changetracking.adapter.git

<<plug-in>>
org.unicase.changetracking.adapter.subclipse

ui

model.edit

adapter.subclipse

adapter.git

model

controllers vcs

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 5.2.: The plug-ins of the prototype

Figure 5.2 shows a UML component diagram depicting the plug-ins of the prototype
and their dependencies. The subsystems which are mapped to a plug-in are shown as
packages inside the component. The components are flagged with the «plug-in» stereo-
type to emphasize that they are realized as Eclipse plug-ins. All plug-in names start with
the common prefix org.unicase.changetracking. The remainder of this section will
therefore only use the suffixes which are not shared by all plug-ins. Thus, model plug-
in hereinafter refers to the org.unicase.changetracking.model plug-in. Eclipse
plug-ins can reexport the dependencies they have, allowing other plug-ins which depend
on them to use their own dependencies. Thus, transitive dependencies are not shown
in the diagram and also do not need to be specified in the implementation. An exam-
ple for an omitted transitive dependency would be the dependencies from the adapter
plug-ins to the model plug-in. This dependency is already satisfied by depending on the
org.unicase.changetracking plug-in.

Basically, the allocation to plug-ins is based on two rules: The plug-ins should be sep-
arated into user interface (UI), business logic, and domain model code, comparable to
the model view controller architecture. In addition, generated code should be separated

74 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

5.3. Hardware/Software Mapping

from hand-written code, which increases the maintainability because programmers know
in which parts of the code they must look for bugs and which parts are generated and thus
probably bug-free.

To separate the generated code from the hand-written one, the model and model.edit
subsystems must be located in a separate plug-in, as they are both generated. They could
be put into one plug-in, but this was not done because the model.edit plug-in con-
tains classes for viewing the model elements and thus has dependencies on the Eclipse
UI. Therefore, it can be seen as an UI component and should not be mixed with the do-
main model classes. In addition, it is a recommendation of the Eclipse platform that code
which has dependencies to the Eclipse UI packages should not be merged with code with-
out such dependencies. For Eclipse and UNICASE, this is especially important for reusing
plug-ins for client server purposes: Servers usually do not have a graphical user inter-
face and therefore do not need any of Eclipse’s UI classes. Having no dependency on the
heavyweight UI framework of Eclipse allows the server to run with less resource usage.
The server, however, needs the same data model as the clients it communicates with. If
data model classes are mixed with user interface dependent classes in the same plug-in,
this would add a undesired UI dependency on the server code.As for UNICASE, the UNI-
CASE server (the EMF store) needs the model plug-in to be able to store classes defined
in it. If the model code was in the same plug-in as the model.edit code, the EMF store
would require this combined plug-in which would introduce an undesired dependency
on the whole Eclipse UI framework. This is the reason why the model.edit code must
be in its own plug-in, separated from the model code.

For the same reason, the plug-in containing the business logic (org.unicase.change-
tracking) was separated from the user interface code (ui plug-in). In contrast, there was
no reason to separate the controllers subsystem from the vcs subsystem as they both
are part of the business logic and can be deployed together.

Although the two adapters are part of the business logic, they must be located in sepa-
rate plug-ins. This claim originates from the core idea of the adapters: A user should not
be required to have all existing adapters, but only those for the version control system he
works with. If all adapters were in the main plug-in this would introduce dependencies on
all supported version control systems: A user installing the prototype would have to in-
stall all supported version control systems, which is not desirable at all. Thus, each adapter
must be a separate plug-in which can be installed independently of the main plug-ins and
other adapter plug-ins.

5.3. Hardware/Software Mapping

The software components elaborated in the previous section have to be mapped to hard-
ware which runs them. Figure 5.3 shows a UML deployment diagram depicting the run-
time configuration of the machines used by the tool. Components of the prototype are
shown in blue and off-the-shelf components are shown in green. The org.unicase pre-
fix at the beginning of the component names was omitted. The machines where the tool
is mainly used are the developer machines, i.e. the PC a developer is working with. All
components of the plug-in must be installed on this machine. The plug-in does not do any
networking with other machines. Instead, this is done by the off-the-shelf components.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 75

Chapter 5. System Design

<<device>>
UNICASE Server

<<device>>
Repository Machine

<<device>>
Developer Machine

EMFStore UnicaseClient

VCSClientVCSServer

changetracking

changetracking.model

changetracking.model.edit

changetracking.ui

changetracking.adapter.?

changetracking.model

<<?>>

<<RMI>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 5.3.: The hardware/software mapping

The UNICASE client plug-in on which the prototype is dependent communicates with
a UNICASE server. The server component of UNICASE — the EMF Store — allows the
sharing of the UNICASE models and thus the collaboration with other users. The client
uses Java’s remote method invocation (RMI) to communicate with the server. The model
plug-in must be installed at the UNICASE server, because the EMF store must have access
to the classes of all model elements received from the client. Since the plug-in registers its
additional model element classes via an extension point (cf. Section 6.3), the EMF store has
no direct dependency on the model plug-in, but it still must be installed.

The communication between the version control system client and the server housing
the repository is entirely held by the version control system, which is accessed by the
appropriate adapter. The adapter is represented by the changetracking.adapter.?
component. The name was chosen to symbolize that this must be an adapter matching
the version control system in use. The «?» stereotype on the connection between the VCS
server and the client symbolizes that the protocol depends on the VCS and thus cannot be
universally specified here.

5.4. Further System Design Decisions

Most of the further system design decisions are dictated by the host environment, i.e.
Eclipse and UNICASE. This section elaborates how the different aspects are handled by
the host environment. In the cases where the prototype can handle an aspect itself, the
decision about how to handle it is taken. These case are, however, rather rare.

Persistent Data Management

The persistence of data allows the system to maintain its state even if it is shut down
and restarted, which is very important for this prototype. In Section 4.1, three groups of

76 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

5.5. Boundary Conditions

data were identified: The content of CASE documents, the version control data, and the
data acquired during release checking.

The release checking data is only needed transiently; it can be discarded after the check
is finished. Thus, it does not have to be saved persistently. The version control data like
revisions, branches, or changes to the local workspace must of course be kept persistently,
but this is managed by the respective version control system, so the prototype does not
have to perform any actions for the persistence management of this data. Finally, the CASE
document content must also be saved persistently — a CASE document which vanishes
after the system is shut down is of no use. The CASE document data resides in the model
of UNICASE, which also handles its persistence autonomously (using serialization to an
XML representation). The prototype does not have to trigger the persistence of objects,
since this is all done by UNICASE. This means that even though different data has to be
kept persistently, it is all handled by off-the-shelf components.

Access Control

Just like the persistent data management, access control is handled by the host environ-
ment. The EMF store handles the access rights of users reading models from it or com-
mitting changes to a model to it. The server of the version control system handles access
control to the repository where the source code is stored.

Global Control Flow

Since the prototype runs on the Eclipse platform, the decision about the global control
flow is basically out of its scope. The platform dispatches the handling of events like the
pressing of a button by the user. The basic mechanism used by the Eclipse platform is
an event-driven process in which the GUI is periodically queried for events and the corre-
sponding event handlers are called by the platform when an event occurs.

5.5. Boundary Conditions

Most boundary use case are controlled by the Eclipse platform. The startup and the shut-
down, for example, are out of the scope of the plug-in. Configuration use cases either
affect the CASE data or the version control data. Configuration of the CASE model data is
already supported in various ways by the UNICASE plug-in. Model elements and projects
can be created, destroyed and altered. Configuration of version control data is provided
by the respective version control system.

The only boundary use case within the scope of the prototype is the handling of excep-
tions. Even here, however, the prototype can rely on sophisticated mechanisms provided
by Eclipse, UNICASE, and the version control system. UNICASE, for example, handles the
corruption of model data. The version control system usually keeps track of the version
control data and verifies that no corruption or malicious changes are introduced. In ad-
dition, it usually provides atomicity semantics for any action performed to the repository.
This means that the prototype does not have to treat cases where data integrity could be
harmed by, for example, a loss of connection to the repository while a commit is carried out
or data is fetched to the local workspace. Hardware and network failures are also handled

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 77

Chapter 5. System Design

at lower levels.
Since the use cases for the system are rather short actions, and all important data is

already protected at lower levels, the best exception handling strategy for the prototype
in most use cases is to abort the use case and show a respective error message to the user.
Eclipse already provides a mechanisms for this: An exception message is shown in an
error message box. In addition, the stack trace of the exception, which is available in the
Java Virtual Machine, is saved in the so-called error log view, which can be accessed by
advanced users, developers, or administrators to retrieve details about the exception in
order to fix the problem.

78 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

Chapter 6.

Object Design

This chapter features the object design of the prototype. However, not all aspects of the
object design are shown, since listing all of them would exceed the scope of this thesis. In-
stead, the chapter focuses on interesting parts of the design, challenges and their solutions,
and the usage of framework functionality of Eclipse and UNICASE.

The chapter starts with a short introduction of the Eclipse Modelling Framework (EMF)
which is used to implement the domain model using model driven development. After-
wards, the final domain model as modelled with EMF is shown and explained. The next
section elaborates the Eclipse extension point concept, which is extensively used by most
Eclipse plug-ins, including UNICASE and the prototype. The following section covers dif-
ferent aspects of a design challenge of the prototype: The appropriate displaying of model
elements in various situations. The next challenge covered is the execution of commands
which work on EMF models while providing “undo” and “redo” support. Finally, the
approach to adapt the prototype to different version control systems is shown.

6.1. The Eclipse Modelling Framework

The data model of UNICASE, and consequently also the data model of this prototype, is
modeled with the Eclipse Modeling Framework. The EMF project is a modeling frame-
work and code generation facility for building tools and other applications based on a
structured data model. From a model specification described in XMI, EMF provides tools
and runtime support to produce a set of Java classes for the model, along with a set of
adapter classes that enable viewing and command-based editing of the model, and a basic
editor [77].

Modelling with EMF is very close to UML modelling because the EMF meta model ECore
is an implementation of a subset of the UML meta model MOF (Meta Object Facility).
ECore contains only the most important parts of the meta model like classes and their
associations. It is therefore comparable to EMOF (essential MOF), which is the core of the
MOF meta model. The reason is that the goal of EMF was to provide a implementation
of MOF. However, many unimportant features, which are barely used and would only
increase complexity, were left out, resulting in the ECore meta model.

The Java classes generated by the framework are very flexible. For example, they strictly
separate interface from implementation. Each model class becomes a Java interface and a
class implementing it. The client code should never access the implementation but only
work with the interfaces. This provides for features which are usually impossible in Java,
like multiple inheritance (which is allowed by UML and thus shall also be allowed by
EMF). Since client code should not access the implementation directly, it may not create

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 79

Chapter 6. Object Design

model elements directly (as this would require a call to the constructor of the concrete im-
plementation). Instead EMF makes use of the abstract factory pattern and provides generic
factory classes for the model elements. It also supports many reflective aspects like obtain-
ing the classes contained in a package or the operations and attributes of a model element
class. The additionally generated classes for viewing model elements are extensively used
by UNICASE and this plug-in, as shown in Section 6.4.2. The framework also supports
the command-based editing of models, which enables support for tracking changes and
undo/redo support. This feature, which is also used by UNICASE and this plug-in, is ex-
plained later in Section 6.5.

6.2. Adaption of the Analysis Object Model

The classes which should be added to the unified model of UNICASE must be modelled
using EMF. As a basis for the EMF model, the analysis class model of the CASE entity
objects was used. This model, which was shown in Figure 4.1 on page 58 and explained in
Section 4.1.1, contains the classes which should be modelled using EMF and thus included
in the UNICASE meta model. However, some small refactorings have to be applied to this
model to make it suitable for UNICASE.

org.unicase.model

changetracking

AttachmentWorkItem AbstractRelease

Stream Release

RepositoryLocation

 shortDescription : String

ChangePackage

RepositoryStream RepositoryRevision

git

 identifyingHash : String
 url : String

GitRepository

 branchName : String

GitBranch

 tagName : String

GitTag GitBranchPackage

0..* 0..*0..* 0..*

0..1

1

1 0..*

1 0..*

1

1

0..*1

refers to

uses

belongs to

built revision

attached to

located at

contains

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.1.: EMF data model

80 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.2. Adaption of the Analysis Object Model

Figure 6.1 shows the model after the necessary refactorings. In addition, a specific pack-
age for the Git adapter is included. Classes that were newly introduced in the model are
highlighted in green color. All other facts of the model have remained basically the same
as in the analysis model, with the only exception that ChangePackage received a short-
Description attribute, which is used for creating the changelog for releases and some
classes were flagged to be abstract (italic font).

All model classes reside in the org.unicase.model package and its subpackages. The
classes which have to be newly introduced for the prototype are located in the change-
tracking subpackage. Note that all classes in this diagram are implicitly subclasses of
UnicaseModelElement from which any model element used in a UNICASE model must
be derived. Thus all classes have basic attributes inherited from unicase model element.
The most important are a name and description. Also note that all attributes shown are
implicitly private, but EMF also generates get and set methods, so they can be read and
written.

The first change which can be seen from this model is that the WorkItem is no longer
inside the change tracking package, but in the usual UNICASE package1, because the work
item is already part of the unified model, as UNICASE already supports the modelling of
various types of work items. In the unified model, the work item class is the abstract super
class of any type of task or even a set of tasks.

The second change is that the change package is no longer directly connected to the work
item. Instead, change packages now extend the Attachment class provided by the unified
model. The model allows to add attachments to any model element. This refactoring was
done so the attachment mechanism can be reused instead of adding another association to
the work item class. This helps to keeps work items simple.

The final refactoring conducted is that work items are no longer directly associated to
Releases. Instead, an abstract class AbstractRelease was introduced in the UNICASE

core model. The reason for this design decision is that the UNICASE core model may not
be dependent on the change tracking model, since the change tracking plug-in should be
an optional extension of UNICASE. Introducing a dependency would make UNICASE un-
usable without the plug-in. Another approach would be to add the whole change tracking
package to the UNICASE core. This, however, is undesirable as it would blow up the core
model unnecessarily. Thus, the best way is to create a small interface between the core
classes of UNICASE and the change tracking classes without introducing dependencies
from the core to the change tracking package. This interface is the AbstractRelease
class. As the inheritance does not introduce a dependency from the superclass to the sub-
class, the core is no longer dependent to the change tracking plug-in. The introduction of
the AbstractRelease class and the addition of the association from the work item to
the abstract release are the only two changes to the core model. All other functionality is
handled inside the change tracking model, which resides in the optional plug-in.

Finally, the diagram displays the model package of the Git version control system adap-
ter. This package is only shown as an example for a model package which any adapter
must provide. Adapters must provide all these classes, because different version control
systems use different information for their implementations of the abstract concepts of
repositories, revisions, streams, and change packages. Thus, an adapter model must pro-

1Actually, the work item is in a task subpackage which is not shown here for simplicity reasons.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 81

Chapter 6. Object Design

vide concrete subclasses of the abstract classes RepositoryLocation, Repository-
Stream, RepositoryRevision, and ChangePackage.

For the git package, the implementation of a repository location is called GitRepos-
itory. It uses a URL to identify the location of the remote repository and a so-called
identifying hash. This is a string representation of the SHA-1 hash of the earliest commit
in the repository. It is used to check whether a local repository corresponds to a remote
repository. This is important because many local repositories can exist in the workspace
of a developer, and the plug-in must identify the one corresponding to a remote reposi-
tory when performing actions like building a release. The implementation used by the Git
adapter to represent a stream in the repository is the GitBranch. It contains the name of
the branch, which is sufficient to find the branch in the Git repository. Finally, the GitTag
class is an implementation of a repository revision. It contains the tag name which can be
used to uniquely retrieve the revision of that tag. Another Git implementation of a revi-
sion could be a revision class which stores the SHA-1 hash of a revision, which would also
be sufficient. However, it was chosen to use a tag because the tag name offers better read-
ability. The Git implementation of a change package is the GitBranchChangePackage
which is linked to a branch. This branch stores the changes contained in the package.

6.3. Extension Points

The Eclipse platform consists of many plug-ins. It uses the OSGi implementation Equinox
to establish a dynamic component model in which components can be added or removed
even during runtime. A component in OSGi is also called bundle. A bundle is a normal
jar-file containing compiled Java classes and resources. It contains additional manifest in-
formation stating onto which other bundles this bundle depends and which Java packages
of this bundle are visible for other bundles. An Eclipse plug-in is an extension of the bun-
dle mechanism: A plug-in is an OSGi bundle with additional content. The most important
additional content is an XML file called plugin.xml. In this file, the plug-in declares
extension points it offers and extensions for points of other plug-ins.

The Eclipse platform is designed to maximize extensibility. The extension point mecha-
nism allows plug-ins to contribute to the functionality of other plug-ins without introduc-
ing a dependency from the extended plug-in to the extending one.

A plug-in which should be extensible by other plug-ins must define an extension point
in its plugin.xml file. The details about the extension point are modelled as an XML
Schema and also included in the plug-in. In order to extend this plug-in, another plug-in
must specify an extension for the advertised extension point in its plugin.xml. It must
provide details to the extension point which must correspond to the XML schema defining
the extension point. Thus, the schema defines which information an extending plug-in
must provide to extend the point. The extending information can be ordinary data like
strings or numbers. However, most of the time it is the fully qualified name of a Java class.

The core concept of passing classes to extension points is very close to the dependency
injection design pattern, which aims to relocate the instantiation of objects to an external
framework. This breaks the dependency which the creating class must have on the class
of the object it intends to create2. Instead of directly creating a new instance (new X()

2The factory method design pattern breaks this dependency, too, but introduces a dependency on the factory

82 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.3. Extension Points

in Java), it asks the framework to provide an instance implementing a specific interface.
Dependency injection is a core concept of plug-in based platforms, because it allows to
write code which will later instantiate classes that do not even exist at the time the code is
written, since no more dependency on the instantiated class exists in the code.

<<plug-in>>
extended plug-in Eclipse platform

<<Singleton>>
ExtensionRegistry

<<plug-in>>
extending plug-in

<<Interface>>
Interface

Implementation

Client

established

<<Interface>>
IConfigurationElement<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.2.: Extension point usage

The concept of extending plug-ins by passing classes via extension points is shown in
Figure 6.2. The figure shows a UML class diagram in which the different plug-ins are de-
picted as UML packages with a «plug-in» stereotype. The Eclipse platform itself is also
shown as a UML package. The extended plug-in usually contains the code working with
the extensible data. This code is here shown as the Client class. Like in the dependency
injection pattern, this code must instantiate an object of a class which implements a cer-
tain Interface. The extending plug-in provides an Implementation of this interface.
To avoid the dependency on the extending plug-in, the client code cannot instantiate the
implementation class directly. Instead, it defines an extension point and requires in the
extension point definition that each extension must provide a class which implements In-
terface3. The extending plug-in provides the Implementation class. It therefore has
a dependency on the extended plug-in. This dependency, however, is desired. Only vice
versa, from the extended plug-in to the extending plug-in, is undesirable. The extending
plug-in defines an extension in its plugin.xml. An XML directive could look like this
(provided the extension point is named X):

<extension point="X">
<cls class="XImplementation" />

</extension>

class which in turn has the dependency on the class to be instantiated. Thus, the dependency still exists,
but is transformed into a transitive one.

3In addition, the class may also be required to extend a certain class or more than one interface.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 83

Chapter 6. Object Design

This code specifies that the extension point named X is to be extended with the class
XImplementation. The Eclipse platform contains a singleton class called the Exten-
sionRegistry. It reads the plugin.xml files of all currently installed plug-ins and thus
has information about the extension points and corresponding extensions. To receive an
instance of Interface, the Client asks the extension registry for any extensions to the
extension point X.

The extension registry maintains a set of IConfigurationElements for each exten-
sion point. Each element contains the information about one extension of this point. The
configuration elements provide a method to create an instance of the class specified in the
extension. The client code chooses from the configuration elements it receives from the
registry and calls one of them to create the instance.

The Eclipse platform provides various extension points used by the prototype plug-in.
Also the prototype defines an extension point for providing adapters for different version
control systems. This way, adapters to new version control systems can be implemented as
dedicated plug-ins and added without modifying the prototype itself. Further information
about this mechanism is shown in Section 6.6.

6.4. Displaying Model Elements

Displaying the EMF model elements is a central part of the user interface of the plug-in.
The model elements are presented in different structured views for the various use cases.
For example, in the details page of the check-release-wizard the work items and change
packages contained in the release are displayed in a tree-like structure, where the change
packages are considered child-nodes of the work items to which they belong. Figure 6.3
shows an example release containing three work items, each having one attached change
package.

Figure 6.3.: Hierarchic displaying of model elements

Another structural view of model elements is a flat list. Such list can be used when
one or model elements are to be selected out of a set. For example, in the Create Change
Package use case, the work item to which the change package is to be appended has to be
chosen. In the dialogs used to choose these model elements, all available model elements
are displayed in a list. In addition to structured views, single model elements are displayed
at various locations in the user interface.

To achieve a good user experience, model elements are displayed with their name and

84 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.4. Displaying Model Elements

an icon matching their type (see again Figure 6.3). By choosing appropriate images for the
newly modelled element classes, the user is able to quickly identify what kind of model
element he is seeing. For the change package, a package like icon as known from Java-
packages in the Eclipse Java IDE is chosen, for example. In addition to newly created
model elements, the plug-in must also be able to display existing model elements of UNI-
CASE, like the different work items, which already have a dedicated icon and label.

While the model elements are displayed with label and icon, the icon is overlayed with
small additional images — so-called decorations — to display some details about the
model element. For example, a release is overlayed with a tick symbol if it is already
built.

Concerning the classes used to display and decorate model elements efficiently, three
major challenges were identified and solved using features of the Eclipse platform and the
Eclipse Modelling Framework. The following subsections will elaborate the mechanisms
used to solve each of these challenges in detail. The challenging problems are:

1. Displaying structures of model element like the above-mentioned trees and lists
while keeping a sharp separation of the model and the user interface code.

2. Generically providing labels and icons for any type of model element. Displaying
existing UNICASE model elements without writing additional glue code.

3. Overlaying decoration images over the model element icons.

As a basis for all user interface components, the standard widget toolkit (SWT) as pro-
vided by the Eclipse platform is used. SWT is a versatile user interface toolkit which allows
to assemble user interfaces from different parts, the so-called widgets. Examples for basic
widgets are Buttons, ScrollBars, or windows (called Shells in SWT). While other user
interface frameworks for Java like Swing are purely written in Java, SWT’s core consists
of platform-dependent C code which accesses the native user interface components of the
respective operating system. SWT therefore runs faster than pure Java frameworks and
SWT widgets resemble the look-and-feel of native applications for the respective operat-
ing system better than their Java pendants. This comes with the cost that an own library
must be provided for each operating system on which an SWT application is to be used.
Due to the widespread use and maturity of SWT, libraries exist for all major operating sys-
tems. A small problem is that these libraries are not 100% compatabible to each other, since
different operating system user interfaces provide different sets of features. When using
MacOS, for example, buttons always have a fixed height, while other operating systems
allow arbitrary height settings. The Eclipse platform is built on SWT and provides useful
add-ons like the JFace UI toolkit.

6.4.1. JFace Viewers

The displaying of model elements in different structural views like lists, tables or trees
is achieved by using the JFace toolkit provided with the Eclipse platform. This toolkit
provides different Viewer classes for displaying data in different structures. The main
purpose of these viewers is to provide model-based content adapters for SWT widgets.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 85

Chapter 6. Object Design

org.eclipse.jface.viewers

org.swt.eclipse.widgets

EMF

<<Generated>>
org.unicase.changetracking.model.edit

<<Interface>>
ILabelProvider

org.unicase.changetracking.ui

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getText(element : Object) : String
+getImage(element : Object) : String

AdapterFactoryLabelProvider

+AdapterFactoryLabelProvider(factory : AdapterFactory)

AdapterFactoryLabelProvider

+adapt(target : Object, type : Object) : Object
+isFactoryForType(type : Object)

<<Interface>>
AdapterFactory

+ComposedAdapterFactory(registry : Registry)

ComposedAdapterFactory

<<Constant>> +INSTANCE : Registry

+createAdapterFactory(type : Object) : AdapterFactory

Registry

ChangeTrackingAdapterFactory

ReleaseItemProviderChangePackageItemProvider

+setInput(input : Object)
+setContentProvider(provider : IContentProvider)
+setLabelProvider(provider : ILabelProvider)

ContentViewer

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getElements(inputElement : Object) : Object []

<<Interface>>
IContentProvider

TreeViewer TableViewerListViewer

Widget

ArrayContentProvider

+DecorationProvider(subProvider : ILabelProvider)
+getText(element : Object) : String
+getImage(element : Object) : Image
+decorateImage(element : Object, image : Image) : Image

DecorationProvider

+decorateImage(element : Object, image : Image) : Image

ChangePackageStatusDecorationProvider

1

0..*

10..*

0..*

1

10..*

1

0..*

1

0..*

<<create>> <<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.4.: The JFace viewers

Figure 6.4 shows a class diagram depicting the most important classes of the JFace
viewers. The abstract base class of the viewers is the ContentViewer. An IContent-
Provider and an ILabelProvider must be assigned to a viewer. Then it can be pop-
ulated with an input. The viewer sharply separates the different tasks to be performed to
display an input model: The content provider is responsible for extracting the structure to
be displayed out of the model. The label provider is then responsible for providing a text
and icon for each object of the input model which was extracted by the content provider.

The typical usage of a viewer is to assign a label provider and content provider upon
its creation by using the correspondent set methods. Then, the viewer can be populated
with an input model by calling the setInputmethod, taking the model as parameter. The
parameter type is Object, depicting that any type of model can be set as input4. Once the
setInput method is called, the viewer asks the content provider to extract the structure
from the model by calling its getElements method with the input model as parameter.
The content provider will then extract the structure and return all elements, which are to
be displayed in the viewer, as an array.

Note that the class diagram was simplified: There are more methods which content
providers must support to fully populate different viewers. For a tree viewer for exam-
ple, the content provider must also implement a getChildren method to extract the
child nodes of a certain tree node from the model. In order to keep the focus on the basic
concepts, this, and other details, will not be discussed further. For lists and tables, the

4This could have also been solved more elegantly with type parameters and generic classes. However, the
JFace toolkit should also be able to run with older Java versions which do not yet support generic classes.

86 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.4. Displaying Model Elements

getElements method is sufficient.
The content provider must be aware of the inner structure (i.e. the class) of possible input

models, since it only receives an Object. Thus, a corresponding content provider must be
implemented for all classes to be used as input. JFace provides basic content providers for
widely used input models. For example, the ArrayContentProvider displayed in the
diagram assumes that the input model is an array. It simply casts the input variable to an
array and returns this.

The getElements method of the content provider returns an array of objects. This
array depicts the elements which will be displayed in the viewer. For example, a list viewer
will show each array element in one list item. The table viewer will display each element
in a table row.

Since the structure of the input is now present to the viewer, only one task is missing
before the viewer can actually populate the underlying SWT widgets: Text and icon have
to be provided for each element to be displayed. This is done by the label provider associ-
ated with the viewer. The viewer calls the getText and getImage methods, repeatedly
handing each of the input elements as parameter. It is the label provider’s task to examine
the input element and return a matching label (like the name of the element, for example)
and icon, respectively. Since the methods receive the input elements as bare Objects, the
label provider must be implemented to match the possible input classes. After the viewer
has gathered all the images and texts for the different input elements, it can display them
appropriately by creating and altering a set of SWT Widgets it consists of.

There are three major viewers in the framework, as already mentioned and depicted in
the class diagram: The ListViewer shows the input elements in a plain list. Each list item
has its own line. The TreeViewer shows the input as a tree-like structure. Finally, the
TableViewer shows the elements in a table. Each row corresponds to a model element.
The table can have many rows, and each row can be assigned a different label provider to
show various information about the input elements.

Advantages of the Viewer Concept

Viewers depict model-based wrappers of SWT widgets. SWT in contrast only provides,
widgets which do not allow to specify an input model and a way to display it. Instead, they
can only be populated with bare strings and icons. This especially harms the traceability
of user input: If the user selects an entry in an SWT list, the system can only tell which
line number was selected. If the client code needs the actually selected object, it has to
retrieve the object itself. This is usually done by maintaining mappings from line number
to associated input object. This is cumbersome, and the resulting client code is bug-prone.
In addition this mapping code will probably be written repeatedly, thus introducing re-
dundant code. The JFace viewers provide the traceability from the user input back to the
model, since the viewers are populated directly with the model instead of strings.

Another advantage is the sharp separation of concerns: Instead of decoding the data in
the model itself, the viewer delegates the different tasks to the providers: The structure
is decoded by the associated content provider and the decision how to display each ele-
ment of the input is taken by the label provider. This high degree of delegation makes the
viewer concept very flexible: By using different content providers, a data-structure can be
displayed in completely different ways. Thus, two different views of the very same model

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 87

Chapter 6. Object Design

can be displayed without having to alter the model or viewer code.
By using different label providers, elements can be shown in different ways. Especially

the icons can be altered by different providers. An example for this is the details page of
the check release wizard: A label provider is used which decorates the change package
icons showing whether they are already merged in.

The framework can be extended easily by creating separate viewer classes. For the im-
plementation of the plug-in, for example, a basic “one item” viewer was implemented,
which only displays one object by showing an icon and the text next to each other. A sim-
ple content provider was written for this viewer, which assumes that the input consists of
only one element.

6.4.2. EMF Label Providers

The JFace viewer concept, which makes use of label providers to display text and icons
for input models, was elaborated in the previous section. The data model of this plug-in
is the one of UNICASE which is modeled using EMF. To display UNICASE models with a
viewer, a label provider must exist which is able to provide an icon and text for all possible
model elements a UNICASE model can contain. Usually each model element class has its
own icon and the name of the model element is used as text.

The challenge is to create a label provider for all possible elements contained in the uni-
fied model. The main problem is that these classes can come from different sub-plug-ins
which are not necessarily known at the time the plug-in is implemented. Luckily, EMF
provides a way to construct label providers for arbitrary EMF models. By using an ex-
tension point, the actually supported set of model elements can be extended dynamically,
thus allowing existing code to support models that will be created at a later stage.

Concepts

The foundation for these versatile label providers is that EMF generates a basic label
provider for each model element class. This label provider is only able to provide text
and icons for this very class. EMF classes are always contained in a package. For each
of these packages, EMF generates an AdapterFactory. Adapter factories combine the
abstract factory design pattern with the adapter design pattern. In the adapter pattern, an
adapter is a class that provides a specified interface by wrapping a class which does not
provide this interface by default. This is often used to adjust the interface of legacy code
to match the interface of newly created code. In this case, an adapter is used to provide
the ILabelProvider interface to EMF model element classes. The adapter is created by
an adapter factory. Such a factory provides an adapt method which takes an object (the
adaptee) and a type stating to which interface the adaptee should be adapted. If possible,
the factory then creates and returns an adapter for the specified adaptee, adapting it to the
specified interface.

The adapter factory which is generated by the EMF framework for each package is able
to take an instance of each of the classes in its package as adaptee. It can adapt it to various
useful interfaces. The ILabelProvider interface is one of them. When asked to adapt
one of the classes in its package to a label provider, it looks up the generated label provider
class corresponding to the adaptee’s class. It then creates an returns an instance of this label

88 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.4. Displaying Model Elements

provider class. This mechanism already allows to generically retrieve a label provider for
any model element contained in a package. However, a UNICASE model consists of model
elements from different packages, so some more effort has to be applied to generate a label
provider for any given model element class in any given package.

org.eclipse.jface.viewers

org.swt.eclipse.widgets

EMF

<<Generated>>
org.unicase.changetracking.model.edit

<<Interface>>
ILabelProvider

org.unicase.changetracking.ui

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getText(element : Object) : String
+getImage(element : Object) : String

AdapterFactoryLabelProvider

+AdapterFactoryLabelProvider(factory : AdapterFactory)

AdapterFactoryLabelProvider

+adapt(target : Object, type : Object) : Object
+isFactoryForType(type : Object)

<<Interface>>
AdapterFactory

+ComposedAdapterFactory(registry : Registry)

ComposedAdapterFactory

<<Constant>> +INSTANCE : Registry

+createAdapterFactory(type : Object) : AdapterFactory

Registry

ChangeTrackingAdapterFactory

ReleaseItemProviderChangePackageItemProvider

+setInput(input : Object)
+setContentProvider(provider : IContentProvider)
+setLabelProvider(provider : ILabelProvider)

ContentViewer

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getElements(inputElement : Object) : Object []

<<Interface>>
IContentProvider

TreeViewer TableViewerListViewer

Widget

ArrayContentProvider

+DecorationProvider(subProvider : ILabelProvider)
+getText(element : Object) : String
+getImage(element : Object) : Image
+decorateImage(element : Object, image : Image) : Image

DecorationProvider

+decorateImage(element : Object, image : Image) : Image

ChangePackageStatusDecorationProvider

1

0..*

10..*

0..*

1

10..*

1

0..*

1

0..*

<<create>> <<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.5.: Classes for using EMF label providers

Figure 6.5 shows a UML class diagram depicting all classes necessary to provide generic
label providers. The lower packages depict the different model element packages included
in the unified model (or other EMF model). The code for all these packages is generated
by EMF. The package for the classes of the prototype (org.unicase.changetracking.
model.edit) is shown in more detail. The «generated» prototype was used to depict
that all classes in the package are generated by EMF. It is called the edit package of the
corresponding model package. While the model package contains the classes depicting
the model elements themselves, the edit package contains useful classes for working with
the model elements.

The edit package contains a label provider for each class in the corresponding model
package. Here, the provider for the release class (ReleaseItemProvider) and the change
package class (ChangePackageItemProvider) are shown exemplarily. The periods be-

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 89

Chapter 6. Object Design

tween them depict that there are many other providers in the package. They are not called
label provider but item provider because they do not only implement the ILabelProvider
interface but other interfaces, too. The package also contains the aforementioned adapter
factory, named after the package name (ChangeTrackingAdapterFactory). This fac-
tory, which implements the AdapterFactory interface, is able to adapt all model element
classes of the change tracking package to interfaces like the ILabelProvider interface
by creating and returning the appropriate item provider. Besides an adapt method, the
AdapterFactory interface also provides a method isFactoryForType which returns
whether the factory can adapt to a given type.

In addition to the change tracking package, there are many more packages included in
the UNICASE EMF model. In the diagram, the periods right of the packages depict this
fact. All packages which should be included in the model are registered by creating ex-
tensions to the extension point org.eclipse.emf.ecore.generated_package. The
class reading from the extension point is the Registry class. This singleton class is able
to create the appropriate adapter factory for a EMF model element whose package was
registered at the aforementioned extension point. This is accomplished by querying the
model element for its package and then creating the factory of this package, if the package
is among the registered ones.

The registry can be wrapped by a ComposedAdapterFactory. This class, which also
implements the AdapterFactory interface, is created from the registry5. Its adapt
method asks the registry to create an appropriate adapter factory and then forwards the
call to this factory.

Finally, there is the AdapterFactoryLabelProviderwhich wraps an adapter factory
while providing the label provider interface: It is created with an adapter factory and
maintains a link to this factory. Whenever one of its get methods is called, it calls the
factory’s adapt method which provides the corresponding label provider. The get call is
then forwarded to this label provider.

Dynamic Behaviour

Since different concepts are involved in the generic use of label providers, a quite com-
plex dynamic behaviour evolves. To generate a generic label provider, the client code must
first create a ComposedAdapterFactory from the Registry. Then, an AdapterFac-
toryLabelProvider can be created, wrapping the adapter factory. This is the generic
label provider which is able to provide text and images for all EMF model elements.

Figure 6.6 shows an UML communication diagram depicting the dynamic behaviour
calling the getImage class for a model element of the class Release. The call is made
to the previously created AdapterFactoryLabelProvider (1). First, the label provider
asks the ComposedAdapterFactory to adapt the release object to a ILabelProvider
(2). The adapter factory in turn orders the Registry to create the adapter factory cor-
responding to a release (3). The registry looks up the package of the Release class (the
change tracking package) and creates and returns the corresponding ChangeTracking-
AdapterFactory (4). The composed adapter factory now forwards the adapt call to the
factory it received from the registry (5). This factory creates the label provider for the

5It can also be created by directly specifying a list of other adapter factories. Since this is not important for
the prototype, it is omitted here

90 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.4. Displaying Model Elements

10: image

6: releaseIP 5: adapt(release,ILabelProvider.class)

9: image

8: getImage(release)

7: releaseIP

releaseIP:ReleaseItemProvider

factory: ChangeTrackingAdapterFactory

4: factory

3: createAdapterFactory(release.eClass())

INSTANCE:Registry

2: adapt(release,ILabelProvider.class)

:ComposedAdapterFactory

1: getImage(release)

:AdapterFactoryLabelProvider:Client

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.6.: Dynamic behaviour of EMF label providers

release class (ReleaseItemProvider) and returns it to the (6) composed factory, which
also returns it to the adapter factory label provider (7). This label provider now forwards
the getImage call to the label provider it received from the factory (8). The release la-
bel provider creates and returns the image for releases (9) and the adapter factory label
provider returns this image to the client (10).

Summary

In summary, EMF is able to provide generic label providers for model classes by the
following mechanisms:

1. A generated adapter factory per package can create providers for model classes in
the package.

2. The Registry registers all EMF packages which were advertised through the ex-
tension point. A ComposedAdapterFactory can access the registry to generate
the adapter factory of the package a model class is contained in. Thus, the corre-
sponding label provider can be created for any EMF model class.

3. The AdapterFactoryLabelProvider wraps an adapter factory to allow easy use
of the factory as label provider.

6.4.3. Decorating Images and Text

The last challenge related to displaying model elements is the so-called decoration of the
text and particularly the images. Decorating an image means overlaying small sub-images
which show details about the model element. This concept is extensively used in Eclipse.
The prototype uses decorations as well: A release, for example, is overlayed with a tick
symbol if it is already built, otherwise with a “play” symbol (triangle facing right). Dec-
orating text means altering this text. For example, some version control plug-ins prefix

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 91

Chapter 6. Object Design

the name of files with a “>” symbol if the local version of the file contains changes. In the
prototype, the decoration of text was not used and thus will not be discussed further.

org.eclipse.jface.viewers

org.swt.eclipse.widgets

EMF

<<Generated>>
org.unicase.changetracking.model.edit

<<Interface>>
ILabelProvider

org.unicase.changetracking.ui

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getText(element : Object) : String
+getImage(element : Object) : String

AdapterFactoryLabelProvider

+AdapterFactoryLabelProvider(factory : AdapterFactory)

AdapterFactoryLabelProvider

+adapt(target : Object, type : Object) : Object
+isFactoryForType(type : Object)

<<Interface>>
AdapterFactory

+ComposedAdapterFactory(registry : Registry)

ComposedAdapterFactory

<<Constant>> +INSTANCE : Registry

+createAdapterFactory(type : Object) : AdapterFactory

Registry

ChangeTrackingAdapterFactory

ReleaseItemProviderChangePackageItemProvider

+setInput(input : Object)
+setContentProvider(provider : IContentProvider)
+setLabelProvider(provider : ILabelProvider)

ContentViewer

+getText(element : Object) : String
+getImage(element : Object) : Image

<<Interface>>
ILabelProvider

+getElements(inputElement : Object) : Object []

<<Interface>>
IContentProvider

TreeViewer TableViewerListViewer

Widget

ArrayContentProvider

+DecorationProvider(subProvider : ILabelProvider)
+getText(element : Object) : String
+getImage(element : Object) : Image
+decorateImage(element : Object, image : Image) : Image

DecorationProvider

+decorateImage(element : Object, image : Image) : Image

ChangePackageStatusDecorationProvider

1

0..*

10..*

0..*

1

10..*

1

0..*

1

0..*

<<create>> <<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.7.: Decorating images and text

The task of decorating images was accomplished using the similarly named decorator
design pattern as shown in Figure 6.7. Displayed here are the already discussed interface
ILabelProvider and its implementation AdapterFactoryLabelProviderwhich can
be used to provide labels for arbitrary EMF objects. Another class implementing the label
provider interface was created to achieve the decoration: the abstract DecorationProvi-
der. Its constructor uses another label provider as parameter and keeps a link to this
provider. As no decoration of text is desired, calls of getText method are directly for-
warded to the linked label provider. The getImage method first fetches the basic image
by calling the linked provider’s getImage method. Then, however, it calls its deco-
rateImage method to overlay additional images over the basic image. The result of the
decoration is then returned. The decorateImage method is abstract, so the concrete dec-
oration has to be implemented by concrete subclasses. An example subclass shown in the
diagram is the ChangePackageStatusDecorationProvider class. It is used in the
check release wizard to display the stats of change packages. As shown in Figure 6.8, they
are either overlayed with a tick symbol if already merged into the release, with a yellow
square if not yet merged, or with a red cross if they are erroneous.

Figure 6.8.: Package status icons generated by a decorator

92 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.5. Command Execution

6.5. Command Execution

UNICASE tracks changes applied to the model and supports actions like undoing them.
The basis for tracking these actions is the command design pattern. Figure 6.9 shows a
UML class diagram depicting the command pattern as provided by EMF and used by
UNICASE and the prototype. A Command is an action which possibly alters the model. It
can be executed and possibly supports undo and redo operations. The canX methods
indicate whether the feature X is available. For keeping a history of executed commands
and for allowing to undo more than one command, EMF keeps a CommandStack. A
command can be executed on this stack by passing it to the stack’s execute method. The
stack will trigger the command’s execute method and store it for later undoing and history
keeping. An EditingDomain manages a set of EMF models and the commands working
on these models. For this purpose, it uses a command stack. Commands working on the
models of an editing domain are usually created through the domain and executed on the
domain’s command stack. The RecordingCommand is an implementation of a command
which automatically tracks the changes it does to models in the editing domain. EMF
maintains a global editing domain which can be accessed via static get methods. In most
cases it is sufficient to use this global editing domain.

Unicase

Changetracking

EMF

+execute()
+run()
#doRun()

AbstractUnicaseCommand

ChangeTrackingCommand

XController

+getCommandStack() : CommandStack

<<Interface>>
EditingDomain

+execute(Command c)
+canUndo() : boolean
+undo()
+canRedo() : boolean
+redo()

<<Interface>>
CommandStack+canExecute() : boolean

+execute()
+canUndo() : boolean
+undo()
+canRedo() : boolean
+redo()

<<Interface>>
Command

RecordingCommand

1

0..*

1

1

0..* 1

<<call>>

<<use>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.9.: Command execution using EMF

The base class for each command in UNICASE is the AbstractUnicaseCommandwhich
is also an implementation of a Command. Its execute method calls the abstract doRun
method. Thus, a concrete UNICASE command is bound to a specific receiver by appropri-
ately implementing the doRun method which calls the receiver. However, the command
often implements the functionality itself, without delegating to a receiver class. In this
case, the command is no longer decoupled from the receiver. This disadvantage is of
limited importance because this part of the command design pattern is not relevant for

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 93

Chapter 6. Object Design

UNICASE; what is important here is the tracking of changes a command does to the model.
A UNICASE command also provides a run method. This method executes the command
on the stack of the global editing domain of EMF. If this domain supports transactions, it
will automatically wrap the command in a recording command, thus recording all changes
and providing undo and redo support.

The change tracking prototype wraps most of its functionality into commands. For this
purpose, the abstract ChangeTrackingCommand class was created as a subclass of the
UNICASE model element class. The controller classes of the different use cases run concrete
subclasses of these commands to execute the functionality of the respective use case. In the
diagram, the class XController is a placeholder for any controller class of the use cases
which calls the commands. The concrete implementations are provided by the version
control system adapter component to achieve behaviour unique for the specific version
control system. This is shown in the next section.

6.6. Adaption to Different VCSs

One of the design goals is to allow the collaboration with various version control systems.
Consequently, the part of the functionality which is identical for all version control systems
has to be separated from the part which is specific to each version control system. There
must be a way to support additional version control systems without having to change the
core code. To achieve this, a special plug-in is created for each version control system. This
plug-in must contain an adapter class which wraps the version control system classes and
provides a fixed interface to the core code. To support the addition of adapter plug-ins
without changing the core code, the core plug-in provides an extension point to which the
adapter plug-ins advertise their adapter classes.

Figure 6.10 shows an overview of the classes used to support various version control
systems. All the classes shown in the VCS Adaption package reside in the core plug-in.
The classes in the Git package are provided by the Git adapter plug-in. Other adapter
plug-ins must provide similar classes.

The core class for the adaption is the VCSAdapter interface, for which each adapter
plug-in must provide an implementation. It defines different methods to be provided by
the adapter. There exists roughly one method per use case. In the diagram, the methods
createChangePackage and buildRelease invoked in the equally named use cases are
shown. The periods below these methods indicate that the adapter provides more methods
for other use cases, which are of no importance here. The parameters for the methods
were omitted as well. Of course, each method must take all important information as
parameter. For example, the buildRelease method must be given the release to be built
and a properties object which was obtained while checking the release. As shown in the
diagram, the methods of the adapter class return a ChangeTrackingCommand. Since this
class is abstract, all adapters must provide concrete implementation for each command
the adapter provides. The core plug-in calls the adapter’s method to obtain the concrete
command object. This object is then executed by the core plug-in, as shown in the Section
6.5.

Before the client code (a controller class for one of the use cases) can execute a command
for a certain use case, it has to obtain it from an adapter. For this purpose, it can use the

94 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

6.6. Adaption to Different VCSs

VCS Adaption

Git Adapter

+collectChanges() : ChangeTrackingCommand
+buildRelease() : ChangeTrackingCommand

<<Interface>>
VCSAdapter

+providesFor(p : IProject) : boolean
+providesFor(cp : ChangePackage) : boolean
+providesFor(s : RepositoryStream) : boolean
+providesFor(r : RepositoryRevision) : boolean
+createAdapter() : VCSAdapter

<<Interface>>
VCSAdapterProvider

+createFrom(p : IProject) : VCSAdapter
+createFrom(cp : ChangePackage) : VCSAdapter
+createFrom(r : RepositoryStream) : VCSAdapter
+createFrom(r : RepositoryRevision) : VCSAdapter

<<Singleton>>
VCSAdapterRegistry

ChangeTrackingCommand

GitAdapterProviderGitAdapterGitBuildReleaseCmd

0..*1

<<create>>

<<create>>

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 6.10.: Adaption to different VCSs

VCSAdapterRegistry singleton object. This object implements the registry which reads
the extensions from the provided extension point (cf. Section 6.3). The extension point
definition requires its extensions to provide a class which implements the VCSAdapter-
Provider interface. The registry keeps an aggregation of all these provider classes regis-
tered via the extension point.

The first method a VCSAdapterRegistry must provide is the createAdapter meth-
od. This is a factory method which creates and returns the corresponding adapter. In the
Git adapter plug-in shown in the diagram, the GitAdapterProvider class would create
an instance of the GitAdapter class. The other four providesFormethods are indicator
methods. Given a workspace project (IProject), a change package, a repository stream,
or a repository revision, the respective indicator method must return whether this adapter
plug-in is able to provide an adapter for the given object. For workspace projects, an
implementation of this indicator method will probably check which team provider is reg-
istered for this plug-in and return true, if the team provider matches the version control
system adapted by this plug-in. For streams and repository revisions, an implementation
will simply check whether the objects belong to the concrete subclass supported by this
adapter. The Git adapter will check, for example, if a revision is an instance of GitTag,
a repository stream is an instance of GitBranch, or a change package is an instance of
GitBranchPackage.

The registry contains four createFrommethods corresponding to the four provides-
For methods of the adapter provider. These methods ask all registered providers one by
one if they can provide an adapter for the given object by calling their corresponding pro-

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 95

Chapter 6. Object Design

videsFor method. Once a provider returns true, the registry calls its createAdapter
method to create an adapter and returns this adapter to the caller.

The reason for the existence of four create methods is that, depending on the use case,
the correct adapter must be found, starting from either a change package, a repository
revision, a repository stream, or a workspace project. In the Create Change Package use case,
for example, the adapter must be determined by observing the workspace project from
which the change package is to be created. In contrast, the Review Change Package use case
starts with only a change package and must determine the adapter from this object.

The dynamic behaviour is the following: The client code (a controller class) calls the
appropriate method from the registry to create an adapter. The registry asks all registered
adapter providers. If one of them can provide an adapter, the registry calls its create
method which yields the adapter. The registry returns the adapter back to the controller
class. This class calls the adapter’s method corresponding to the use case handled by
the controller (e.g. buildRelease for the Build Release use case.). A command object is
created and returned by the method. Finally, this command is executed by the controller
to trigger the desired behaviour.

Every adapter plug-in must provide classes like the ones shown exemplarily for the
Git adapter: It must provide a VCSAdapterProvider and register it at the extension
point of the core plug-in. It must also provide implementations for the different use cases
as subclasses of the ChangeTrackingCommand class. In case of the Git package, the
GitBuildReleaseCommand is shown as an example of a command implementing the
Build Release use case. The periods on its right suggest that there must be more classes in
the plug-in for the other use cases. Finally, the plug-in must provide a VCSAdapter. This
adapter must be created by the adapter provider of the plug-in. Its methods must create
and return the respective command implementations.

96 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

Chapter 7.

Conclusion

After the previous chapters covered the design of the prototype, this chapter evaluates the
results of this thesis. The evaluation starts with the results of a user experiment, which
rates the anticipated user acceptance of the prototype. Afterwards, the two approaches
for representing change packages are compared, and advantages and deficiency of each
approach are highlighted. In the following, the content of this thesis is summarized retro-
spectively. The thesis finishes with the proposal of topics for future research.

7.1. Evaluation

Since this thesis had a theoretical part (approaches for change package representation)
and a practical part (application of the approaches to aid release management and re-
views), two different aspects have to be evaluated. For the practical application, the user
acceptance is an important factor and was therefore evaluated by executing a small user
experiment. For the theoretical part, the two approaches were compared, summing up
their advantages and disadvantages.

7.1.1. User Acceptance

Tool support must be accepted by the users to yield any benefits. A factor which greatly
influences the acceptance of the user is how complicated the usage of the tool is, how fast it
can be learned, and how much time the different use cases take compared to the execution
without tool support. The prototype performs well in all these areas: Most use cases are
realized with only a few clicks, and no complex configurations have to be performed. For
example, the Apply Change Package use case is usually only one click. In contrast, conduct-
ing the application without the tool would require to identify the correct revision/patch to
be applied and then trigger the application manually, which is by far more work. The cre-
ation of a change package is only one click, too, followed by the selection of the work item
to which the change package is to be associated and the entering of a description. This is
not considerably more work than checking-in the code to a repository without using the
tool.

The great advantage of the tool becomes obvious when checking and building a release.
This process has been reported as very cumbersome by the person building the releases
for the UNICASE project. With the tool, checking and building a release is basically only
two clicks. In addition to the automatic building, the tool also provides a changelog which
would have to be maintained manually without the tool and may not be accurate. Of

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 97

Chapter 7. Conclusion

course, building a release may yield conflicts. And, as elaborated in Section 2.2.4, resolu-
tion of conflicts is a very complex task. However, this problem would also occur without
the tool, so this is no inconvenience of the tool but of the process in general.

Experiment Setup

Five post graduate computer science students with background knowledge in the field
of version control systems, but no knowledge about the tool, participated in a limited user
experiment. Each of them was monitored separately while performing the following tasks:
First, the participants were shortly explained all use cases, i.e. were told the purpose of the
use case and its steps while performing them at a fully set-up eclipse installation with
UNICASE, JGit/EGit, and the plug-in (with the Git adapter) installed. Afterwards, they
were given a clean eclipse workspace with only an empty java project under Git version
control and a UNICASE project in it. They were told to perform the use cases one by one.
They were given the possibility to receive additional help by asking questions, but were
told to use this possibility only if they are unable to continue on their own. Afterwards,
they were asked the following questions. The possible answer choices are displayed in
parenthesis:

• Is the tool more complicated than using the version control system directly? (Tool
more complicated / Equally complicated / VCS more complicated)

• Do you think that the tool is useful if used in software development projects? (Very
useful / Useful / Hardly useful / Not useful at all)

• If you had to decide if the tool is used in a software development project, would you
decide to use it? (Yes / No / Depends on project or other factors)

After having answered the questions, the participants were asked to explain the reasons
for their respective answers. In addition, they were permitted to talk freely about their
opinions and experiences concerning the tool.

Results

All of the participants were able to perform all use cases without calling for additional
help. Although they had to search the correct buttons to start the use cases for some time,
because they were not familiar with the user interface of UNICASE, they were able to per-
form the use cases not considerably slower than the person who demonstrated the use
cases (who is familiar with the tool and UNICASE).

All participants agreed that using the tool is not more complicated than using the version
control system directly. In fact, two participants found the tool to be easier. When being
asked about the reason for their decision, they described the dialogs as being tidier and
having less unnecessary input fields than the ones of the version control system. When
being asked to rate the tool, four participants rated the tool as very useful and stated that
they would use it in software projects, especially bigger ones. One participant replied that
he would not use it, because he saw no sense in release management and traceability from
tasks to changes.

98 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

7.1. Evaluation

When talking freely about their opinions and experiences with the tool, the majority
was positively surprised by the release building process, as it combined their previous
changes in seconds, without additional input, and generated a changelog automatically.
They assumed that this functionality is the one which might save the most time.

In conclusion, the user feedback was very positive and yielded high acceptance. However, it is
obvious that the results of this experiment are not representative due to its very limited
number of participants. In addition, students were selected whose opinion might differ
from the one of experienced software engineers. Thus, this experiment can only be treated
as a positive cue for the user acceptance of the tool. An experiment on larger scale, espe-
cially in a real project, would be necessary to receive more reliable results. This is a topic
for possible future work.

7.1.2. Comparison of the Two Approaches

Two approaches for representing change packages were elaborated in this thesis (cf. Sec-
tion 2.4). Both have their advantages and problems which are to be evaluated. The first
approach was to use patch files as change package representation, the second one was to
use lightweight branches (called branches in the remainder of this section).

A general problem is the challenge of establishing a reliable link between source code
and work items. Both approaches, like probably every other approach, are not 100% reli-
able. This means that it can always be that a change belonging to a work item has been
committed to the repository without the creation of a change package. This can happen
if the source code is committed with the sources of another change package, which hap-
pens if a developer was working on two tasks and committed the changes for them in one
change package instead of separating them. Although this problem exists theoretically, it
is of minor practical relevance because the developer will notice the mistake when he sees
that one of his tasks has no associated change package although he already implemented
and committed it.

Both approaches assign the task of initially creating a link between the source code
changes and the work items to the developer himself. Such an approach can never be se-
cured against mistakes a developer makes while performing this task (like linking source
code to the wrong work item). However, there is no reliable way to eliminate this error:
Automatic techniques as described by others (cf. related work, Section 1.3) do not rely
on the developer but are unable to produce reliable links, too. In fact, their error rate is
much higher than anticipated error rates of reasonable developers. The general problem
is that artifacts in human readable text or source code can never be linked together with
full reliability. Consequently, our approach of letting the developer create the links might
still be the better in comparison to automatic approaches, especially if recommendation
techniques are added (cf. future work, Section 7.3).

Another fact which can affect the reliability of links is if changes are directly committed
to the version control system without the creation of a change package. The approach
using branches is more robust against this, because it allows to check if a commit exists
which is not on a change package branch. The patch approach in contrast does not link the
repository directly to the work items and thus is less applicable for ensuring reliable links.
As a matter of fact, the support for checking the links was omitted in the prototype which
uses patches. However, some possible approaches for implementing this functionality for

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 99

Chapter 7. Conclusion

the patch approach were discussed in Section 2.4.
The most important advantage of the patch approach is that it is applicable for all ver-

sion control systems which support patches (which almost all VCSs do). It is even applica-
ble if no version control system but only tools for creating and applying patches like diff
and patch are used.

The branch approach requires to have lightweight branches. It must support a high
amount of concurrently running branches, since each work item is created on a separate
branch. These branches should preferably be local. Otherwise, many use cases will take
much time due to the network delay. Thus, the branch approach is limited to a set of VCSs
supporting all these features. Especially the currently most widespread VCS Subversion
is not suitable for this approach due to its lack of local lightweight branches. However,
many of the modern distributed VCSs are suitable, so this restriction becomes less severe
the more these modern VCSs are established and accepted.

In conclusion, both approaches seem suitable for implementing the desired functional-
ity. The approach using branches seems more promising because it is tied closer to the
version control system, thus allowing to maintain links more reliably.

7.2. Summary

This thesis proposed two approaches for maintaining code-to-task traceability links by
using version control systems. These approaches were applied to the release management
and code review process. The main idea for the code review application was to use the
links to aid the review process by helping to apply the code to the reviewer’s machine. For
the release management, the links were used to check which work items are contained in
a release and to build a release automatically by merging in the missing features.

The thesis began with a motivation for the problem and a related work survey in the
different fields covered by the thesis. It continued with the elaboration of fundamen-
tal concepts the approaches build on — mainly version control systems and related con-
cepts. Afterwards, two approaches for representing change packages, namely patches and
lightweight branches, were proposed. After the theoretical concepts were elaborated, the
design of a tool applying these concepts began. First, a solution-independent elicitation
and analysis of the requirements for such tool was presented, followed by the design of
a prototype for the proposed tool. Finally, the theoretical concepts were compared and
the user acceptance of the prototype was measured in a user experiment. Concerning the
concepts, it was concluded that the branch approach is better suitable as it promises more
reliable links. Concerning the prototype, the user acceptance was high and the tool was
rated positively.

7.3. Future Work

Many of the techniques and applications used in this thesis, like the establishment of code-
to-task links, are still not explored in depth. Therefore, there is still much room for future
research in this area. Five concrete topics for interesting future work were identified and
are presented below.

100 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

7.3. Future Work

Combination with Other Release Management Tasks

The field of release management is not explored as much as other fields of the software
configuration management. Thus, a lot of work can still be done here. The prototype
created in this thesis covers only one aspect of release management. An interesting ap-
proach would be to combine the techniques used in this thesis with other tasks of release
management like build management and deployment, thus creating a one-click-to-release
tool.

Improvement of Techniques

Another possible field of research is the improvement of the techniques used in this the-
sis. The patch approach needs a way to reliably perform the checking and building of
releases. The branch approach cannot ensure reliable links either, as stated in the previous
section. However, the unreliability is limited to incorrect usage. Thus, a promising ap-
proach could be the combination of the branch approach with a recommendation system
using automatic techniques like latent semantic indexing (cf. related work, Section 1.3.2)
to build links automatically. These links can then be used to run a sanity check against the
link the user is trying to establish. If the automatically retrieved links do not match the
link the user creates, he can be warned and other possibly correct targets for the link can
be recommended.

Additional Techniques for Traceability Links

The two approaches used in this thesis are not the only possible ones. In addition to im-
proving them, other techniques for maintaining source-code-to-task links (or links to other
software engineering concerns) may be a field for future research. As most of the current
approaches in the field of code-to-concern traceability focus on providing automatically
calculated heuristics instead of more reliable links, there is still room for further research
in this area.

Additional Applications for Code-to-Task Links

Once source-code-to-task links are established, there are many possible applications for
them. The two topics elaborated in this thesis are examples that show the potential pro-
vided by such links. Further applications may yield very interesting and trailblazing re-
sults. Thus, the exploration of further applications is certainly a promising field of re-
search.

Representative User Experiment

The user experiment undertaken in this thesis was very limited. A study where the
release management and review support of this tool is used in a real project would be very
beneficial to evaluate the true value offered by the application of code-to-task traceability
to the field of reviews and release management.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 101

Appendix A.

User Manual

This is a manual for using the implemented plug-in. Although the Git adapter is used
here, the usage of the SVN adapter is similar. It is assumed that the usage of UNICASE

and Git is well-known. The usage of the plug-in starts either in the UNICASE perspective,
where model elements reside, or in a development perspective like the Java perspective,
where changes from projects are tracked.

Use cases which begin in the UNICASE perspective are usually started by pressing a but-
ton in the model element editor of model elements provided by the plug-in. For example,
the model element editor shows a Check Release and a Build Release button,
when showing a release element. These can be pressed to start the respective workspace.

The use cases which begin in a development perspective are started by right-clicking a
project which is under Git version control. The appearing context menu contains a sub-
menu labeled Unicase Change Tracking, as shown in Figure A.1. This submenu
contains buttons to start or resume the respective use cases.

A.1. Setting up a Stream

When a new project is set up, at least one stream has to be created before the rest of the
plug-in can be used properly. This is done in the development perspective where the lo-
cal workspace can be inspected (for example with the Package Explorer view). Before a
stream can be set up, a project under Git version control must exist in the local workspace.
A stream in UNICASE must always be associated to a specific Git branch. The currently
checked-out Git branch will be associated to the stream to be created. Thus, make sure to
check out the branch which should contain the stream before starting the stream creation.
With the appropriate branch checked out, right-click the project and choose Cre-
ate Stream From Current Branch from the Unicase Change Tracking menu.
A window is shown where the location and name of the stream can be chosen, as displayed
in Figure A.2. Here, you can browse all UNICASE projects in your UNICASE workspace to
find an appropriate place for the stream. A stream model element is a usual UNICASE

model element, so it can be placed in any leaf section.
Once a name and location are chosen, the plug-in searches for matching Git repository

locations in the UNICASE project which was selected as a location for the stream. A Git
repository location matches if it contains the same initial commit than the local Git repos-
itory to which the selected project belongs. If no such repository location exists, which
will be the case if the UNICASE project is newly created, a dialog asking for the further
proceeding is shown (Figure A.3).

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 103

Appendix A. User Manual

Figure A.1.: The “Unicase Change Tracking” context menu

104 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

A.1. Setting up a Stream

Figure A.2.: The “Select Location” dialog

Figure A.3.: Further proceeding in case of missing repository location

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 105

Appendix A. User Manual

The dialog provides three options: First, a new repository location can be created in the
UNICASE project with the Create button. If this option is chosen, the system asks for the
URL of the remote repository. This URL will be used for synchronizing the local repository
with the remote one. Second, the stream can be left without a repository location. If this
option is chosen, a location must be added manually later on. As long as no location is
associated with the stream, most operations will fail. Finally, the whole stream creation
can also be aborted with the Cancel button.

The system creates the stream model element and a Git branch model element reflecting
the chosen Git branch. The branch model element is created in the same location as the
stream. The model elements get properly associated to each other and to the location, so
that the stream is ready to contain releases. The exemplified result of a “Create Stream”
operation (with creating a repository location using a GitHub URL) is shown in Figure A.4.

Figure A.4.: Result of a “Create Stream” operation

A.2. Creating a Release

The creation of a release is not directly supported by the plug-in. A release is a regu-
lar UNICASE model element. It can be created directly with UNICASE like other UNI-
CASE model elements by right-clicking a leaf section, choosing Create New Model El-
ement... and selecting Change Tracking Release in the displayed dialog. After
the release is created, it must be associated with a stream. This can be done in the model
element editor.

A.3. Collecting Changes and Creating a Change Package

The easiest way to create a change package is to check out the commit from which the
changes are to be made (with the usual Git methods). Then, make the modifications to be
contained in the package without committing them. Once you are done with the changes
for one package (or earlier, if you want to save the changes in the remote repository), right-
click the project in the package explorer and select Create Change Package from
the Unicase Change Tracking menu.

106 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

A.3. Collecting Changes and Creating a Change Package

Because creating a change package and attaching it to a work item is always executed to-
gether, the plug-in asks for a work item to attach the change package to. You are presented
a dialog (Figure A.5) in which you can choose an work item to which the change package
is to be attached. For faster filtering, you can choose the project in which the work item is
placed and the user to which the work item is related. If a user is chosen, only work items
that are either assigned to the user or are to be reviewed by the user are displayed. If [No
User] is chosen, all work items in the project are displayed. You can also choose to create
a new work item by selecting one of the «Create new ...» entries: A feature, a work
item, or an issue can be created. If an entry for creating a work item is chosen, a dialog to
select a name and a location for the newly created item is displayed, similar to the one for
as depicted in Figure A.2.

Figure A.5.: Choosing a work item

Once an item is chosen, a wizard for creating the change package pops up. On the
first page (Figure A.6), the selected work item, UNICASE project and repository location
are shown. The repository location is automatically looked up in the selected UNICASE

project by searching for a repository location matching the local repository. If no repository
is found, a new one can be created.

On the next page of the wizard (Figure A.7), you are asked to enter a name, short de-
scription, and long description for the change package. These will be used in the model
element and the first commit on the Git branch that will automatically be created. The
fields follow the conventions for Git commits: The short description should be a one-line
description of the changes which will be displayed in the changelog and in the history
view. The long description is a text which explains the contents more precisely. The name
will be used as the name of the branch. Thus, it must be a valid Git identifier. You will be

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 107

Appendix A. User Manual

Figure A.6.: Change package creation wizard, page 1

shown an error message if the chosen name does not match this criterion. This is the last
page of the dialog. Once you finish it, the change package will be created. The following
steps are taken:

• A branch is created and all changes in the workspace and the staging area (i.e. all
uncommitted changes) are committed to it.

• The new branch is pushed to the remote repository

• A model element for the change package and the Git branch are created and set up
properly.

• The newly created change package is attached to the selected work item.

After a change package has been created, you can add additional changes to this package
by committing to the associated branch. The latest commit on this branch will be used for
applying the package later, so additional commits will also be applied. Thus, you can
also create a change package before doing your changes and commit all your changes to it
afterwards.

A.4. Applying a Change Package to the Local Workspace

To apply a change package to your local workspace, press the Create Change
Package button. It can be found in the top toolbar of the model element editor when
a change package is opened, or next to the link to a change package when a work item is
opened. The change package will be applied to your local workspace. This works only if
the workspace currently contains no changes and a local Git repository corresponding to
the repository location of the change package is located in the local workspace.

108 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

A.5. Applying a Change Package to the Remote Repository

Figure A.7.: Change package creation wizard, page 2

If the Git repository is not found in the local workspace, a dialog is opened in which you
can choose the further proceeding. One option is to select another location for the local
repository. Choose this option if you have a matching local repository which is not located
in the Eclipse workspace. You will be shown a file dialog in which you can choose the
location of the local repository. Another option is to create a local repository by cloning
from the repository location. The third option is to cancel the application process.

Once a local repository is found, the change package is applied to it. This is done by first
pulling the branch associated to the change package from the remote repository and then
checking out this branch.

A.5. Applying a Change Package to the Remote Repository

The plug-in does not provide functionality for applying a single change package to the
remote repository, because this can be done easily directly with Git. Simply apply the
change package to the local workspace, as described in the previous section, merge it with
a desired branch, and push the changes to the remote repository.

A.6. Assigning Work Items to a Release

There is no support for assigning work items to a release in the plug-in, because this can be
done with UNICASE. Work items can be assigned to a release in the model element editor.
The release has a field “Included Work Items” to which the work items can be added.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 109

Appendix A. User Manual

A.7. Checking a Release

Checking a release reveals possible problems and visualizes the progress of that release.
If no problems are revealed and all work items are resolved, the release is ready to be
built. A release can be checked by opening it in the UNICASE model element editor where
the buttons for checking and building a release can be found. Figure A.8 shows a release
opened in the editor. Here, the button () for checking a release, which is located in the
top toolbar, is marked with the label (C).

Figure A.8.: Editor showing a release.

Once the Check Release button is pressed the system asks for updating the local
repository. If you agree, the system will fetch the latest content from the remote repository
to ensure that you have an up-to-date copy in your local workspace. If you skip this
update, the check will be done without updating first, but you will receive a warning
reading that the results might be outdated. If you do not have the project in your local
workspace, you will receive an error message. Once the update is finished or skipped,
the system performs a full check of the release and then shows a window containing the
results. This window is shown in Figure A.9. It contains four tabs which display different
aspects of the release. Above these tabs is the status message. It shows the overall status of
the release, i.e. if it is ready to be built or contains warnings or errors which would prevent
the building process.

The first tab, shown in Figure A.9, contains an overview of the progress of the release.
It contains the amount of work items assigned to this release and indicates how many of
them are already resolved. The building progress is shown, as well, i.e. it is displayed how
many change packages are already merged into branch of the release () and how many
still have to be merged in by a build operation (). The third category to which a change
package can belong to is erroneous (). A change package is erroneous if for some reason
the system cannot determine its state, or it cannot be found or processed properly in the
local repository. In either case, you will find details about the problem in the Problems tab.
Finally, the tab contains a short summary of the status of the release showing if the release
is ready to be built.

The second tab, shown in Figure A.10, contains a tree view of the work items and change
packages belonging to this release. The work packages are shown as child nodes of the
work items to which they belong. The change package icons also show which packages
are merged, which are not merged, and which are erroneous. By pressing the button,

110 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

A.7. Checking a Release

Figure A.9.: Release check window, “Overview” tab

Figure A.10.: Release check window, “Release Content” tab

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 111

Appendix A. User Manual

you can toggle between hiding and showing the work items. If the work items are not
shown, only the change packages are displayed as a list.

Figure A.11.: Release check window, “Problems” tab

The third tab, shown in Figure A.11, contains all warnings and errors that were revealed
while the checks were performed. An error () is a problem that prevents the release
from being built. A warning () is a problem that does not prevent the building process.
However, the process could yield erroneous results. Therefore, it is discouraged to build a
release, if it contains warnings. The tab lists all errors and warnings found and often also
shows a hint how to solve them.

The fourth and final tab is shown in Figure A.12. It contains the changelog. The change-
log is an automatically assembled text showing the short description of all change pack-
ages which were included. It arranges these descriptions in a list-like manner. You can
copy and paste this text into the changelog file of your project or use it for other purposes.

A.8. Building a Release

Like the button for checking a release, the button for building a release () is located in the
top toolbar in the model element editor when a release is selected. In Figure A.8 showing
a release in the editor, it is marked with (B). Once it is pressed, you will be presented
with the decision to update your local repository by fetching the latest updates from the
remote repository. If you do not update, you will receive a warning since you might be
working with outdated data. After the update is finished or skipped, the system performs
a check of the release. When the check is finished, you will be presented the build release
wizard. The first page of this wizard is the same as the check release dialog which opens
up when you check the release. So you can recheck the project before building it. If errors
were detected, the release cannot be built and you have to cancel the building process.
Otherwise, you can switch to the next page where you can enter a name for the tag which

112 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

A.8. Building a Release

Figure A.12.: Release check window, “Changelog” tab

will be used to tag this release in the Git repository. Thus, it must be a valid Git identifier.
Afterwards, you can finish the dialog which starts the building process.

The building process consists of the following steps:

• All change packages that are not yet merged into the branch of the release are merged
into it one by one.

• A tag for the release is created in the Git repository.

• All changed data in the Git repository is pushed to the remote repository.

• A tag model element is created in UNICASE and attached to the release, and the
release build data is set appropriately.

If a conflict occurs during the merge process, a dialog informing about the conflict is
shown and the Java perspective is opened. You are now supposed to resolve the conflict.
You can use all tool support of Git for resolving conflicts. Once you are done, add all con-
flicting files1. Once all conflicts are resolved, you can continue the release building. This is
done by right-clicking the project that is built (or one of the projects, if the release contains
more than one Eclipse project) and choosing Continue Release Building from
the Unicase Change Tracking context menu. The system will continue to merge
the remaining change packages. You will be informed once the building process is finished
successfully. Now, you have the final code for the release in your workspace.

1Adding files is done by selecting them and choosing add in the Team menu. This is Git’s standard way for
marking a conflicting file as resolved.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 113

Bibliography

[1] W.F. Tichy. Tools for software configuration management. In Proceedings of the Inter-
national Workshop on Software Version and Configuration Control, pages 1–20, 1988.

[2] IEEE. IEEE standard for software configuration management plans: ANSI/IEEE std
828-1983. 1983.

[3] IEEE. IEEE guide to software configuration management: ANSI/IEEE std 1042-1987.
1987.

[4] A. Leon. Software configuration management handbook. Artech House, Inc. Norwood,
MA, USA, 2004.

[5] bugzilla.org contributors. Bugzilla. http://www.bugzilla.org.

[6] Free Software Foundation, Inc. GNU Make. http://www.gnu.org/software/
make.

[7] Apache Software Foundation. Apache Ant. http://ant.apache.org.

[8] Free Software Foundation, Inc. Concurrent Versions System. http://savannah.
nongnu.org/projects/cvs.

[9] Apache Software Foundation. Apache Subversion. http://subversion.
apache.org.

[10] Git contributors. Git - fast version control system. http://git-scm.com.

[11] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. A review of tool support
for software inspection. case, page 0340, 1995.

[12] A. Van der Hoek, R. Hall, D. Heimbigner, and A. Wolf. Software release manage-
ment. Software Engineering—ESEC/FSE’97, pages 159–175, 1997.

[13] M.P. Robillard and G.C. Murphy. Representing concerns in source code. ACM Trans-
actions on Software Engineering and Methodology (TOSEM), 16(1):3–es, 2007.

[14] A. Marcus and J.I. Maletic. Recovering documentation-to-source-code traceability
links using latent semantic indexing. In Proceedings of the 25th International Conference
on Software Engineering, pages 125–135. IEEE Computer Society, 2003.

[15] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recovering trace-
ability links between code and documentation. IEEE Transactions on Software Engi-
neering, pages 970–983, 2002.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 115

http://www.bugzilla.org
http://www.gnu.org/software/make
http://www.gnu.org/software/make
http://ant.apache.org
http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
http://subversion.apache.org
http://subversion.apache.org
http://git-scm.com

BIBLIOGRAPHY

[16] UNICASE contributors. UNICASE. http://unicase.org.

[17] The Eclipse Foundation. Eclipse. http://www.eclipse.org.

[18] H. Kagdi, M.L. Collard, and J.I. Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. Journal of Software
Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[19] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller. Mining version histories to
guide software changes. In Proceedings of the 26th international conference on Software
Engineering, pages 563–572. IEEE Computer Society, 2004.

[20] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product
release history. In ICSM, page 190. Published by the IEEE Computer Society, 1998.

[21] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history data for detecting logical
couplings. 2003.

[22] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. 2003.

[23] M.A. Storey, L.T. Cheng, I. Bull, and P. Rigby. Shared waypoints and social tagging
to support collaboration in software development. In Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work, pages 195–198. ACM,
2006.

[24] M.A. Storey, L.T. Cheng, J. Singer, M. Muller, D. Myers, and J. Ryall. How program-
mers can turn comments into waypoints for code navigation. In Software Mainte-
nance, 2007. ICSM 2007. IEEE International Conference on, pages 265–274. IEEE, 2007.

[25] C. Treude and M.A. Storey. How tagging helps bridge the gap between social and
technical aspects in software development. 2009.

[26] Geeknet, Inc. TagSEA. http://tagsea.sourceforge.net.

[27] J. Anvik and M.-A. Storey. Task articulation in software maintenance: Integrating
source code annotations with an issue tracking system. In Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, pages 460 –461, 28 2008-oct. 4 2008.

[28] The Eclipse Foundation. Eclipse MyLyn open source project. http://www.
eclipse.org/mylyn.

[29] A. Marcus, J.I. Maletic, and A. Sergeyev. Recovery of traceability links between soft-
ware documentation and source code. International Journal of Software Engineering
and Knowledge Engineering, 15(5):811–836, 2005.

[30] G. Antoniol, A. Potrich, P. Tonella, and R. Fiutem. Evolving object oriented design
to improve code traceability. In IWPC, page 151. Published by the IEEE Computer
Society, 1999.

[31] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability for
object-oriented systems. Annals of Software Engineering, 9(1):35–58, 2000.

116 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

http://unicase.org
http://www.eclipse.org
http://tagsea.sourceforge.net
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn

BIBLIOGRAPHY

[32] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella. Design-code traceability recovery:
Selecting the basic linkage properties. Science of Computer Programming, 40(2-3):213–
234, 2001.

[33] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Maintaining traceability
links during object-oriented software evolution. Software: Practice and Experience,
31(4):331–355, 2001.

[34] G. Antoniol, E. Merlo, Y.G. Guéhéneuc, and H. Sahraoui. On feature traceability in
object oriented programs. In Proceedings of the 3rd international workshop on Traceability
in emerging forms of software engineering, pages 73–78. ACM, 2005.

[35] G. Antoniol and Y.G. Guéhéneuc. Feature identification: A novel approach and
a case study. In Software Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE
International Conference on, pages 357–366. IEEE, 2005.

[36] M. Eaddy, A.V. Aho, G. Antoniol, et al. CERBERUS: Tracing requirements to source
code using information retrieval, dynamic analysis, and program analysis. In The
16th IEEE International Conference on Program Comprehension, pages 53–62. IEEE, 2008.

[37] W. Zhao, L. Zhang, Y. Liu, J. Luo, and J. Sun. Understanding how the requirements
are implemented in source code. 2003.

[38] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL: Towards a static noninter-
active approach to feature location. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15(2):195–226, 2006.

[39] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta. Improving comprehensibility of
source code via traceability information: A controlled experiment. In Proceedings of
the 14th IEEE International Conference on Program Comprehension, pages 317–326. IEEE
Computer Society, 2006.

[40] N. Wilde and M.C. Scully. Software reconnaissance: Mapping program features to
code. Journal of Software Maintenance: Research and Practice, 7(1):49–62, 1995.

[41] A.D. Eisenberg and K. De Volder. Dynamic feature traces: Finding features in unfa-
miliar code. 2005.

[42] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location via informa-
tion retrieval based filtering of a single scenario execution trace. In Proceedings of
the twenty-second IEEE/ACM international conference on Automated software engineer-
ing, pages 234–243. ACM, 2007.

[43] M. Grechanik, K.S. McKinley, and D.E. Perry. Recovering and using use-case-
diagram-to-source-code traceability links. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 95–104. ACM, 2007.

[44] I. Omoronyia, G. Sindre, M. Roper, J. Ferguson, and M. Wood. Use case to source
code traceability: The developer navigation view point. In 2009 17th IEEE Interna-
tional Requirements Engineering Conference, pages 237–242. IEEE, 2009.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 117

BIBLIOGRAPHY

[45] M.P. Robillard and G.C. Murphy. Concern graphs: Finding and describing concerns
using structural program dependencies. In Proceedings of the 24th international confer-
ence on Software engineering, pages 406–416. ACM, 2002.

[46] M.P. Robillard. Tracking concerns in evolving source code: An empirical study. 2006.

[47] A. Van der Hoek and A.L. Wolf. Software release management for component-based
software. Software: Practice and Experience, 33(1):77–98, 2003.

[48] M. Michlmayr. Quality improvement in volunteer free software projects: Exploring
the impact of release management. In Proceedings of the First International Conference
on Open Source Systems, pages 309–10. Citeseer, 2005.

[49] M. Michlmayr, F. Hunt, and D. Probert. Release management in free software
projects: Practices and problems. Open Source Development, Adoption and Innovation,
pages 295–300, 2007.

[50] J.R. Erenkrantz. Release management within open source projects. In Proc. 3rd.
Workshop on Open Source Software Engineering. Citeseer, 2003.

[51] D. Greer and G. Ruhe. Software release planning: An evolutionary and iterative
approach. Information and Software Technology, 46(4):243–253, 2004.

[52] O. Saliu and G. Ruhe. Software release planning for evolving systems. Innovations
in Systems and Software Engineering, 1(2):189–204, 2005.

[53] G. Ruhe and M.O. Saliu. The art and science of software release planning. IEEE
software, pages 47–53, 2005.

[54] O. Saliu and G. Ruhe. Supporting software release planning decisions for evolving
systems. 2005.

[55] M.E. Fagan. Design and code inspections to reduce errors in program development.
IBM Systems Journal, 15(3):182–211, 1976.

[56] O. Laitenberger and J.M. DeBaud. An encompassing life cycle centric survey of
software inspection. Journal of Systems and Software, 50(1):5–31, 2000.

[57] O. Laitenberger. A survey of software inspection technologies. 2002. ftp://cs.
pitt.edu/chang/handbook/61b.pdf.

[58] A. Aurum, H. Petersson, and C. Wohlin. State-of-the-art: Software inspections after
25 years. Software Testing Verification and Reliability, 12, 2002.

[59] O. Laitenberger. Studying the effects of code inspection and structural testing on
software quality. In Software Reliability Engineering, 1998. Proceedings. The Ninth In-
ternational Symposium on, pages 237–246. IEEE, 1998.

[60] A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta. An experiment to assess the cost-
benefits of code inspections in large scale software development. Software Engineer-
ing, IEEE Transactions on, 23(6):329–346, 1997.

118 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

ftp://cs.pitt.edu/chang/handbook/61b.pdf
ftp://cs.pitt.edu/chang/handbook/61b.pdf

BIBLIOGRAPHY

[61] A.A. Porter and P.M. Johnson. Assessing software review meetings: Results of a
comparative analysis of two experimental studies. Software Engineering, IEEE Trans-
actions on, 23(3):129–145, 1997.

[62] H. Siy and L. Votta. Does the modern code inspection have value? In ICSM, page
281. Published by the IEEE Computer Society, 2001.

[63] C.F. Kemerer and M.C. Paulk. The impact of design and code reviews on software
quality: An empirical study based on PSP data. IEEE transactions on software engi-
neering, pages 534–550, 2009.

[64] M.V. Mäntylä and C. Lassenius. What types of defects are really discovered in code
reviews? IEEE Transactions on Software Engineering, pages 430–448, 2008.

[65] A. Dunsmore, M. Roper, and M. Wood. Systematic object-oriented inspection: An
empirical study. In ICSE, page 0135. Published by the IEEE Computer Society, 2001.

[66] A. Dunsmore, M. Roper, and M. Wood. Further investigations into the development
and evaluation of reading techniques for object-oriented code inspection. In Pro-
ceedings of the 24th international conference on Software engineering, pages 47–57. ACM,
2002.

[67] A. Dunsmore, M. Roper, and M. Wood. The development and evaluation of three
diverse techniques for object-oriented code inspection. IEEE transactions on software
engineering, pages 677–686, 2003.

[68] P.C. Rigby and D.M. German. A preliminary examination of code review processes
in open source projects. Technical report, DCS-305-IR, University of Victoria, 2006.

[69] V. Sembugamoorthy and L. Brothers. ICICLE: Intelligent code inspection in a C lan-
guage environment. In Computer Software and Applications Conference, 1990. COMP-
SAC 90. Proceedings., Fourteenth Annual International, pages 146–154. IEEE, 1990.

[70] L.R. Brothers, V. Sembugamoorthy, and A.E. Irgon. Knowledge-based code inspec-
tion with ICICLE. Innovative Applications of Artificial Intelligence 4: Proceedings of IAAI,
92, 1992.

[71] L.R. Brothers. Multimedia groupware for code inspection. In Communications, 1992.
ICC’92, Conference record, SUPERCOMM/ICC’92, Discovering a New World of Commu-
nications., IEEE International Conference on, pages 1076–1081. IEEE.

[72] L. Harjumaa and I. Tervonen. A WWW-based tool for software inspection. In HICSS,
page 379. Published by the IEEE Computer Society, 1998.

[73] F. Belli and R. Crisan. Towards automation of checklist-based code-reviews. In IS-
SRE, page 24. Published by the IEEE Computer Society, 1996.

[74] F. Macdonald and J. Miller. Modelling software inspection methods for the applica-
tion of tool support. 1995.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 119

BIBLIOGRAPHY

[75] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood. Automating the software
inspection process. Automated Software Engineering, 3(3):193–218, 1996.

[76] F. Macdonald and J. Miller. A comparison of computer support systems for software
inspection. Automated Software Engineering, 6(3):291–313, 1999.

[77] The Eclipse Foundation. Eclipse Modeling Framework project (EMF). http://
www.eclipse.org/modeling/emf.

[78] O.E. Dictionary. Oxford English dictionary online. Mount Royal College Lib., Calgary,
14, 2004.

[79] D.A. Patterson, G. Gibson, and R.H. Katz. A case for redundant arrays of inexpen-
sive disks (raid). In Proceedings of the 1988 ACM SIGMOD international conference on
Management of data, pages 109–116. ACM, 1988.

[80] Brian de Alwis and Jonathan Sillito. Why are software projects moving from cen-
tralized to decentralized version control systems? Cooperative and Human Aspects on
Software Engineering, ICSE Workshop on, 0:36–39, 2009.

[81] P. Weißgerber, D. Neu, and S. Diehl. Small patches get in! In International Conference
on Software Engineering 2008, volume 2008, pages 0–11. Association for Computing
Machinery, One Astor Plaza 1515 Broadway, 17 th Floor New York NY 10036-5701
USA, 2008.

[82] BerliOS. SCCS - the POSIX standard Source Code Control System. http://sccs.
berlios.de.

[83] Mark J. Rochkind. The source code control system. In IEEE Transactions on Software
Engineering, volume SE-1. December 1975.

[84] Sun Microsystems. Sun WorkShop TeamWare. [no longer available].

[85] BitMover, Inc. Bitkeeper - the scalable distributed software configuration manage-
ment system. http://www.bitkeeper.com.

[86] RCS Maintainers. Official RCS homepage. http://www.cs.purdue.edu/
homes/trinkle/RCS.

[87] W.F. Tichy. RCS — a system for version control. Software: Practice and Experience,
15(7):637–654, 1985.

[88] Dick Grune. Concurrent Versions System, a method for independent cooperation.
Technical report, IR 113, Vrije Universiteit, 1986.

[89] Berliner, Prisma Inc, and Mark Dabling Blvd. CVS II: Parallelizing software devel-
opment, 1990.

[90] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control
with Subversion. O’Reilly Media, Inc., Sebastopol, CA, USA, June 2004.

120 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

http://www.eclipse.org/modeling/emf
http://www.eclipse.org/modeling/emf
http://sccs.berlios.de
http://sccs.berlios.de
http://www.bitkeeper.com
http://www.cs.purdue.edu/homes/trinkle/RCS
http://www.cs.purdue.edu/homes/trinkle/RCS

BIBLIOGRAPHY

[91] Brian Berliner. CVS. http://brianberliner.com/cvs/, 2011.

[92] Mike Mason. Pragmatic Version Control Using Subversion. The Pragmatic Program-
mers LLC., Dallas, Texas, USA, 2006.

[93] The Apache Software Foundation. Skip-deltas in Subversion. http://svn.
apache.org/repos/asf/subversion/trunk/notes/skip-deltas.

[94] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,
Prem Devanbu, A. E. Housman, and A Shropshire Lad. The promises and perils of
mining Git, 2009.

[95] Linus Torvalds. Transcript of tech talk: Linus Torvalds on Git. https://git.
wiki.kernel.org/index.php/LinusTalk200705Transcript.

[96] Jon Loeliger. Version Control with Git. O’Reilly Media, Inc., Sebastopol, CA, USA,
May 2009.

[97] Branching and merging with Git. http://lwn.net/Articles/210045/.

[98] Ian Clatworthy. Distributed version control systems — why and how. http://
ianclatworthy.files.wordpress.com/2007/10/dvcs-why-and-how3.
pdf.

[99] Free Software Foundation, Inc. GNU arch. http://www.gnu.org/software/
gnu-arch.

[100] Software Freedom Conservancy. Darcs. http://darcs.net.

[101] Best Practical Solutions LLC. The SVK version control system. http://svk.
bestpractical.com.

[102] Monotone.ca contributors. Monotone. http://www.monotone.ca.

[103] Ross Cohen. Codeville. http://codeville.org. [currently unreachable].

[104] The Mercurial community. Mercurial SCM. http://mercurial.selenic.com.

[105] Canonical Ltd. Bazaar. http://bazaar.canonical.com.

[106] Fossil contributors. Fossil - simple, high-reliability, distributed software configura-
tion management. http://fossil-scm.org.

[107] Microsoft Corporation. Visual Studio Team Foundation Server 2010.
http://www.microsoft.com/visualstudio/en-us/products/
2010-editions/team-foundation-server.

[108] GitHub Inc. Secure source code hosting and collaborative development - GitHub.
https://github.com.

[109] Canonical Ltd. Launchpad. https://launchpad.net.

[110] Google. Google code. http://code.google.com.

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 121

http://brianberliner.com/cvs/
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas
http://svn.apache.org/repos/asf/subversion/trunk/notes/skip-deltas
https://git.wiki.kernel.org/index.php/LinusTalk200705Transcript
https://git.wiki.kernel.org/index.php/LinusTalk200705Transcript
http://lwn.net/Articles/210045/
http://ianclatworthy.files.wordpress.com/2007/10/dvcs-why-and-how3.pdf
http://ianclatworthy.files.wordpress.com/2007/10/dvcs-why-and-how3.pdf
http://ianclatworthy.files.wordpress.com/2007/10/dvcs-why-and-how3.pdf
http://www.gnu.org/software/gnu-arch
http://www.gnu.org/software/gnu-arch
http://darcs.net
http://svk.bestpractical.com
http://svk.bestpractical.com
http://www.monotone.ca
http://codeville.org
http://mercurial.selenic.com
http://bazaar.canonical.com
http://fossil-scm.org
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server
http://www.microsoft.com/visualstudio/en-us/products/2010-editions/team-foundation-server
https://github.com
https://launchpad.net
http://code.google.com

BIBLIOGRAPHY

[111] Assembla, LLC. Assembla project workspaces to accelerate software teams, with
issue tracking, GIT, SVN, and collaboration. http://www.assembla.com.

[112] R.J. Abbott. Program design by informal English descriptions. Communications of the
ACM, 26(11):882–894, 1983.

[113] CollabNet, Inc. Subclipse. http://subclipse.tigris.org.

[114] The Eclipse Foundation. JGit. http://eclipse.org/jgit.

[115] The Eclipse Foundation. EGit. http://eclipse.org/egit.

[116] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-oriented
modeling and design. 1991.

122 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

http://www.assembla.com
http://subclipse.tigris.org
http://eclipse.org/jgit
http://eclipse.org/egit

List of Figures

2.1. Revision graphs for linear development (top) and with branches (bottom). . 13
2.2. Centralized (left) vs. distributed (right) version control. 17
2.3. Different topologies when using a DVCS. 17
2.4. Two versions of a source file . 21
2.5. Two versions of a source file emerging from a common base version 21
2.6. Conflicting versions . 22
2.7. Result of merging version 1 and version 2 of Figure 2.6 23
2.8. Data transferring Git commands . 27
2.9. Criss-cross merge . 28
2.10. Part of the revision graph of the JGit project 29
2.11. Use of different VCSs in Debian packages [80]. 31

3.1. Use case overview . 43

4.1. The entity classes of the CASE package . 58
4.2. The entity classes of the revision handling package 59
4.3. The entity classes of the release checking package 60
4.4. Change package related classes . 61
4.5. Release & stream setup related classes . 62
4.6. Release building related classes . 63
4.7. Dynamic behaviour of the Check Release use case 65
4.8. Dynamic behaviour of the Build Release use case 66

5.1. The subsystem decomposition . 72
5.2. The plug-ins of the prototype . 74
5.3. The hardware/software mapping . 76

6.1. EMF data model . 80
6.2. Extension point usage . 83
6.3. Hierarchic displaying of model elements . 84
6.4. The JFace viewers . 86
6.5. Classes for using EMF label providers . 89
6.6. Dynamic behaviour of EMF label providers 91
6.7. Decorating images and text . 92
6.8. Package status icons generated by a decorator 92
6.9. Command execution using EMF . 93
6.10. Adaption to different VCSs . 95

A.1. The “Unicase Change Tracking” context menu 104

Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management 123

LIST OF FIGURES

A.2. The “Select Location” dialog . 105
A.3. Further proceeding in case of missing repository location 105
A.4. Result of a “Create Stream” operation . 106
A.5. Choosing a work item . 107
A.6. Change package creation wizard, page 1 . 108
A.7. Change package creation wizard, page 2 . 109
A.8. Editor showing a release. 110
A.9. Release check window, “Overview” tab . 111
A.10.Release check window, “Release Content” tab 111
A.11.Release check window, “Problems” tab . 112
A.12.Release check window, “Changelog” tab . 113

124 Jan Finis - Code-to-Task Traceability for Code Reviews and Release Management

	Introduction
	Motivation
	Objective
	Related Work
	VCS Repository Mining
	Source Code Traceability
	Release Management
	Code Review

	Scope
	Outline

	Preliminaries
	Unicase
	Version Control Systems & Related Concepts
	Version Control
	Version Control Systems
	Patches
	Merging

	Popular Version Control Systems
	Early VCSs
	Subversion
	Git
	Further Modern VCSs

	Change Package Representation
	Patches as Change Packages
	Lightweight Branches

	Data Dictionary

	Requirements Elicitation
	Functional Requirements
	Data Model Related Requirements
	Change Package Related Requirements
	Repository Related Requirements
	Further Requirements

	Non-Functional Requirements
	Scenarios
	Scenario ``Project Setup''
	Scenario ``Development Workflow''
	Scenario ``Release Building''

	Use Cases
	Use Case Setup Stream
	Use Case Create Release
	Use Case Assign Work Items to Release
	Use Case Check Release
	Use Case Build Release
	Use Case Resolve Conflict
	Use Case Collect Changes
	Use Case Assign to Work Item
	Use Case Review Change Package
	Use Case Commit Change Package

	Requirements Analysis
	Entity Objects
	CASE Objects
	Revision Handling Classes
	Release Checking Classes

	Boundary & Control Objects
	Change Package Related Objects
	Release & Stream Setup Related Objects
	Release Building Related Objects

	Dynamic Behaviour
	Release Checking
	Release Building

	System Design
	Design Goals
	Robustness & Reliability
	Time & Manpower
	Adaptability
	Utility
	Integration with Existing Systems

	Subsystem Decomposition
	Architecture Overview
	Selection of Off-The-Shelf Components
	Subsystems
	Components (Plug-Ins)

	Hardware/Software Mapping
	Further System Design Decisions
	Boundary Conditions

	Object Design
	The Eclipse Modelling Framework
	Adaption of the Analysis Object Model
	Extension Points
	Displaying Model Elements
	JFace Viewers
	EMF Label Providers
	Decorating Images and Text

	Command Execution
	Adaption to Different VCSs

	Conclusion
	Evaluation
	User Acceptance
	Comparison of the Two Approaches

	Summary
	Future Work

	Appendix
	User Manual
	Setting up a Stream
	Creating a Release
	Collecting Changes and Creating a Change Package
	Applying a Change Package to the Local Workspace
	Applying a Change Package to the Remote Repository
	Assigning Work Items to a Release
	Checking a Release
	Building a Release

	Bibliography
	List of Figures

